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Abstract

Estimation of an unstructured covariance matrix is difficult because of the challenges

posed by parameter space dimensionality and the positive definiteness constraint that

estimates should satisfy. We propose a general framework for nonparametric covari-

ance estimation for longitudinal data where the variables have a natural ordering. Mod-

eling the Cholesky decomposition of the covariance matrix removes constraints from

estimation, including those posed by positive definiteness. In addition, the Cholesky

decomposition enjoys the added advantage over alternative matrix decompositions by

supplying a meaningful statistical interpretation of the corresponding estimated pa-

rameters. We illustrate the equivalence of covariance estimation and the estimation of

a varying coefficient autoregressive model. By defining the varying coefficient as a

bivariate function, we naturally accommodate sparsely or irregularly sampled longitu-

dinal data without the need for imputation.

This framework extends the set of tools available for covariance estimation to any of

those employed in the typical function estimation setting. Viewing stationarity as a

form of simplicity or parsimony in covariance models, we specify the varying coef-

ficient as a function so that we can conveniently penalize the components capturing

the nonstationarity in the fitted function. Casting covariance estimation as bivariate

smoothing problem, we demonstrate construction of a covariance estimator using the

smoothing spline framework and a penalized B-spline expansion. A simulation study
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establishes the advantage of our estimator over alternative estimators proposed in this

setting. We analyze a longitudinal dataset to illustrate application of the methodology

and compare our estimates to those resulting from alternative models proposed for the

covariance for longitudinal data.
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Chapter 1: Introduction

The covariance matrix is the simplest summary statistic characterizing the dependence among

a set of variables. An estimate of the covariance matrix or its inverse is required for nearly all

statistical procedures in classical multivariate data analysis, time series analysis, spatial statistics

and, more recently, the growing field of statistical learning. Covariance estimates play a critical

role in the performance of techniques for clustering and classification such as linear discriminant

analysis (LDA), quadratic discriminant analysis (QDA), factor analysis, and principal components

analysis (PCA), analysis of conditional independence through graphical models, classical multi-

variate regression, prediction, and Kriging. Covariance estimation for high dimensional data has

recently gained growing interest, with less focus on inference and more attention on establishing

consistent estimators when the sample size and number of parameters tend to infinity. While there

is a bit of a gap between theory and practice in this area, much of the work currently being done is

in an effort to fill it.

It is well recognized that there are two primary difficulties in modeling covariance matrices:

high dimensionality and the positive-definiteness constraint. Prevalent technological advances in

industry and many areas of science make high dimensional longitudinal and functional data a

common occurrence, arising in numerous areas including medicine, public health, biology, and
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environmental science with specific applications including fMRI, spectroscopic imaging, gene mi-

croarrays among many others. This influx of data presents a need for effective covariance estima-

tion in high dimensions. However, high dimensional data can fall into two categories of sorts: the

first is the case of functional data or times series data that one typically associates with “big p, small

n”, with each observation corresponding to a curve sampled densely at a fine grid of time points.

On the other hand, in longitudinal studies, the measurement schedule could consist of targeted time

points or could consist of completely arbitrary (random) time points. If the measurement sched-

ule has targeted time points which are not necessarily equally spaced or if there is missing data,

then we have what is considered incomplete and unbalanced data. If the measurement schedule

has arbitrary or almost unique time points for every individual so that at a given time point there

could be very few or even only a single measurement, we must consider how to handle what we

consider as sparse longitudinal data. Thus, high dimensionality may be a consequence of irregular

sampling schemes rather than having more measurements per subject than the number of subjects

themselves.

A common way of reducing parameter dimensionality is to choose a simple parametric model

to characterize the covariance structure. Particularly in the applied statistics literature, there is a

propensity to characterize the dependency structure of the data by choosing a structured covariance

matrix from a number of models on the menu offered from readily available software. Alterna-

tively, the sample covariance matrix S is an unbiased estimator, but is known to be unstable in high

dimensions. An extensive catalogue of methods have been developed to stabilize the naive esti-

mator. Several have proposed shrinking the eigenvalues toward a central value; Stein’s family of

estimators which shrink the eigenvalues of S, but leave the eigenvectors untouched. Recent pursuit

of sparsity, however, has lead to estimators that shrink also shrink the eigenvectors, or the sample

covariance matrix itself toward sparse target structures such as diagonal or banded structures.
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There has been a recent shift in covariance estimation toward regression-based approaches to

eliminate the positive definite constraint from estimation procedures altogether. Principle com-

ponents analysis and Gaussian graphical models among many others can be fit using regression

models, the parameters of which are not constrained to maintain the positive definiteness of the

final estimator. Germane to this idea is the approach of modeling various matrix decompositions

directly, rather than the covariance matrix itself. The variance-correlation decomposition, spec-

tral decomposition, and Cholesky decomposition are just a few examples of reparameterizations

that dissolve the optimization constraints imposed by the positive definiteness requirement. The

Cholesky decomposition in particular has recently received much attention because of its qualities

that make it particularly attractive for its use in covariance estimation. The entries of the lower

triangular matrix and the diagonal matrix from the modified Cholesky decomposition have inter-

pretations as autoregressive coefficients and prediction variances when regressing a measurement

on its predecessors. The unconstrained reparameterization and its statistical interpretability makes

it easy to incorporate covariates in covariance modeling and to cast covariance modeling into the

generalized linear model framework while guaranteeing that the resulting estimates are positive

definite. This formulation sets one up to incorporate the arsenal of techniques for penalized regres-

sion for the challenging task of characterizing the dependency among a set of variables.

However, caution must be exercised when using generalizing linear models for the covariance

of unbalanced data; direct application of much of the previous work in this particular area requires

complete, balanced longitudinal data. When using covariates to model the covariance when the

data are unbalanced, one encounters the issue of incoherence of the autoregressive coefficients

and prediction variances. Much of the existing literature leveraging this framework fails to point

this out or explicitly address the problem. Through its Cholesky decomposition, we propose an

approach to covariance estimation that naturally permits missing observations in the longitudinal

3



dataset. Viewing vectors of repeated measurements as the observation of a continuous process at

a sequence of time points, we accommodate unbalanced data by extending the regression model

associated with the reparameterization to a bivariate functional varying coefficient model.

The remainder of this dissertation is structured as follows. Chapter 2 serves as a brief survey

of developments in covariance estimation, concluding with presentation of the Cholesky decom-

position and the estimation of the associated regression model. We extend this regression model

to a functional varying coefficient model for (potentially) unbalanced data; in Chapters 3 and 4 we

demonstrate covariance estimation with two approaches to bivariate smoothing. Chapter 5 exam-

ines various aspects of the performance of our proposed estimator through simulation studies, and

in Chapter 6 we apply our procedure to a real dataset. We conclude with a summary of our work

and remark on remaining open questions and future endeavors in Chapter 7.
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Chapter 2: Covariance Estimation: A Review

Estimation of a covariance matrix Σ is fundamental to the analysis of multivariate data. The

two primary challenges in fulfilling this prerequisite are due to the total number of parameters

to be estimated in relation to the dimension, and the structural constraints that the elements of a

covariance matrix should satisfy. The number of parameters grows quadratically in the dimension,

and these parameters must satisfy the positive-definiteness constraint. That is, the elements of a

p× p covariance matrix Σ = [σij] for p variables, satisfy the constraint that

c′Σc =

p∑
i,j=1

cicjσij ≥ 0 (2.1)

for all c = (c1, . . . , cp)
′ ∈ <p. These challenges have motivated a growing body of research aimed

at effectively estimating covariance matrices. Given a sample of random vectors Y1, . . . , YN from

a distribution with covariance matrix Σ, a common starting point in the pursuit of an estimate of

this matrix is the sample covariance matrix S:

S = (N − 1)−1
N∑
i=1

(
Yi − Ȳ

) (
Yi − Ȳ

)′ (2.2)

where Ȳ = N−1
∑N

i=1
Yi denotes the sample mean vector. The sample covariance matrix is both

a straightforward and flexible estimator of the p(p+1)
2

parameters of the unstructured covariance

matrix Σ, and it is unbiased for Σ. Its construction produces a positive definite estimate so that the

constraint in (2.1) is satisfied.
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Despite these merits, it has been well established that the empirical covariance matrix is unsta-

ble in high dimensions; see Lin (1985) or Johnstone (2001), for example. The sample covariance

is not parsimonious, making it unsatisfactory when it is suspected that the true underlying covari-

ance matrix is sparse, or has many of its elements equal to zero. Moreover, it is not uncommon to

encounter practical situations in which the data do not permit the straightforward construction in

(2.2). Specifically, we are interested in estimating the covariance matrix associated with a vector

of repeated measurements generated from longitudinal studies in which the measurements on the

ith subject Yi = (yi1, yi2, . . . , yip)
′ are associated with measurement times ti = (ti1, ti2, . . . , tip)

′.

In this setting, the sample covariance matrix is not necessarily an optimal estimator of the covari-

ance matrix because it does not naturally incorporate the temporal structure of the data. Moreover,

construction of the sample covariance matrix requires rectangular, or balanced, data. Table 2.1

shows the ideal form of a (rectangular) longitudinal data set. Unfortunately, longitudinal studies

frequently produce non-rectangular data, where trajectories are potentially sparsely observed at

times which are not common across all subjects. In the case, construction of the sample covariance

matrix as defined in (2.2) is infeasible.

Table 2.1: Ideal form of repeated measurements.

Time
1 2 . . . t . . . p

1 y11 y12 . . . y1t . . . y1p

2 y21 y22 . . . y2t . . . y2p

U
ni

t

...
...

...
...

...
i yi1 yi2 . . . yit . . . yip
...

...
...

...
...

N yN1 yN2 . . . yNt . . . yNp
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These drawbacks have accelerated numerous initiatives detouring the pitfalls on the most ob-

vious route to a covariance estimate toward deliberate modeling of structured covariance matrices

for longitudinal data. These methods employ a number of approaches to reducing the dimension

of the parameter space to balance flexibility and stability of estimators. In this chapter, we present

a review of existing methods for covariance estimation, focusing on those developed specifically

for the application to longitudinal data. Our review is by no means exhaustive and focuses on

developments made in covariance estimation from two connected perspectives: regularized co-

variance matrices, and parsimonious models, including the use of covariates in low dimensions

through generalized linear models (GLM) for covariance. We examine three general classes of es-

timators: structured covariance models, the sample covariance matrix and its regularized variants,

and models for reparameterizations of the covariance matrix. To promote clarity in the discussion

of covariance estimation, for the remainder of this dissertation, we assume that a random vector

Y = (y1, . . . , yp)
′ is centered to have mean zero, unless explicitly indicated.

2.1 Structured Parametric Covariances

In the applied statistics literature, particularly for repeated measures data, it is quite common to

pick a stationary covariance matrix for the covariance structure. These parametric structures were

an attractive alternative to the common approaches that had, at the time, historically been used to

estimate the covariance of a multivariate random vector. These approaches included the univariate

ANOVA and repeated measures ANOVA. In the univariate ANOVA setting, a separate conventional

analysis of variance is performed on the data from each distinct measurement time. Repeated

measures ANOVA entails performing ANOVA as if the data were from a split-plot experiment

with time of measurement being factor defining the split-plots. The ensuing parametric covariance

models sought to exploit the temporal structure in longitudinal data, while the ANOVA-based
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approaches fail to explicitly make sure of this information. The parsimony of these parametric

structures make their computational requirements modest, and software packages implementing

fitting procedures for a growing number of simple models are readily accessible. In this section, we

discuss some of of the parametric models most commonly encountered in the covariance estimation

literature. For comprehensive discussion of parametric models for repeated measures data, see

Jennrich and Schluchter (1986), for example.

The Compound Symmetric Model

At one time, the compound symmetric model was a very popular choice for parametric covari-

ance structure. It specifies constant variance and constant correlation between all pairs of variables,

where the elements of the variance-correlation matrix are given by

σii = σ2 for i = 1, . . . , p, ρij = ρ for i 6= j, (2.3)

where σii = V ar (yi) denotes the ith diagonal element of Σ, and ρij = Cov (yi, yj) /
√
σiiσjj. The

parsimony of this model is a primary reason for its attractiveness, having only two parameters to

be estimated. However, with the development of models allowing for heterogeneous variances and

non-constant correlation, it has received less attention as of late, particularly in the longitudinal

statistics literature.

Autoregressive Models

Low order autoregressive models are among the most frequently used models for time series

and repeated measures data. The first order autoregressive model for response variable yt associ-

ated with measurement time t specifies

yt =


εt, t = 1,

φyt−1 + εt, t = 2, . . . , p,
(2.4)
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where |φ| < 1, and the innovations {εt} are independently distributed according to N (0, σ2
t ) with

σ2
1 = σ2/ (1− ρ2), and σ2

t = σ2 for t = 2, . . . , p. The correlations are given by ρij = φ|i−j| for

i 6= j, which are monotonically decreasing in l = |i− j|.

The AR(1) model generalizes to any arbitrary order k by simply adding additional predecessors

to the covariates in the linear model for yt:

yt =


εt, t = 1,

k∑
j=1

φjyt−j + εt, t = 2, . . . , p,

where k = min (p, t− 1), and the {εt} are independent mean zero Normal random variables. The

variance of {εt} is constant for t > k, and for t ≤ k, the variance is specified so as to ensure that

the variance is constant across all responses yt and the covariance between yi and yj depends only

on |i− j|.

Moving Average Models

Equally as common as the autoregressive model is the moving average model. The response

specification for qth order moving average model is given by

yt =

q∑
j=0

θjεt−j, (2.5)

where the {εt} are independently and identically distributed mean zero Normal random variables

with variance σ2. This model corresponds to correlation matrix with non-diagonal elements

ρij =


(θi−j + θ1θi−j+1 + · · ·+ θq−i+jθq) /

(
1 +

∑q
j=1
θ2
j

)
, 0 < |i− j| ≤ q,

0, |i− j| > q

The variances defining the diagonal elements of the covariance matrix are given by

σii = σ2

q∑
j=0

θ2
j , i = 1, . . . , p.
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The variances are constant, and the correlations between yt and yt−l vanish beyond a finite, constant

lag l. Here θ1, . . . , θq are arbitrary parameters subject only to positive definiteness constraints.

This model generalizes to a qth-order Toeplitz model, with elements of the covariance matrix

given by

σij =


σ2ρi−j |i− j| ≤ q,

0 |i− j| > q,

σ2 i = j,

(2.6)

or covariance matrix of the form
m0 m1 m2 . . . mp−1

m1 m0 m1 . . . mp−2

m2 m1 m0 . . . mp−3

...
...

... . . . ...
mp−1 mp−2 mp−3 . . . m0

 , (2.7)

where mj = 0 for all j > q.

The aforementioned models are stationary, specifying constant variance and with equal same-

lag correlations among responses when the data are observed on a regular grid. Heterogeneous

extensions of these models specify the same form of the correlation but allow time-dependent

response variances. Completely general time dependence (subject to positive definiteness con-

straints) requires the covariance structure to be characterized byO(p) parameters, while specifying

linear or quadratic dependence on time leads to more parsimonious heterogeneous models.

ARIMA Models

An ARIMA(p, d, q) model generalizes a stationary autoregressive moving average (ARMA)

model by postulating that not the observations themselves, but rather the dth-order differences

among consecutive measurements follow a stationary ARMA(p, q) model. A special case is the
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ARIMA(0, 1, 0) model - the random walk:

yj =

j∑
k=1

εk, j = 1, . . . , p, (2.8)

where the εk are independent mean zero Normal random variables with variance σ2. The variance

of the process V ar (yj) = jσ2 increases linearly in time. The correlation between yj and yk also

increases, but nonlinearly, in time:

Corr (yj, yk) =

√
j

k
, j > k.

This model is applicable to longitudinal data which are observed on a regular grid, however, its

continuous time analogue permits this restriction to be relaxed. An important special case is the

continuous time analogue to the random walk, the Weiner process, which has covariance function

Cov (y (ti) , y (tj)) = σ2 min (ti, tj).

Random Coefficient Models

Random coefficient models are a broad class of models often used for clustered or longitudinal

data. They offer reasonable flexibility for characterizing dependency structure but remain parsi-

monious because the number of model parameters is unrelated to the number of repeated measure-

ments and can be applied to non-rectangular data. The formulation of the covariance structure for

these models is most usually a consideration of regressions that vary across subjects rather than

a consideration of within-subject similarity, which is why they are most often considered distinct

from parametric covariance models. Still, they yield parametric covariance structures that gener-

ally have non-constant variances and non-stationary correlations. A general form of the random

coefficient model for pi × 1 vector of measurements on subject i is given by

Yi = Xiβ + Ziγi + εi, i = 1, . . . , N, (2.9)
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where Yi =
(
yi1, . . . , yipi

)′ are measurements taken at equally-spaced times ti1, . . . , tipi , the Zi are

specified matrices, the γi are vectors of random coefficients distributed independently asN (0, Gi),

the Gi are positive definite but otherwise unstructured matrices, and the εi are distributed indepen-

dently (of the γi and of each other) as N
(
0, σ2Ipi

)
. The Gi are usually assumed to be equal across

subjects, so the covariance matrix of Yi is taken to be Σi = ZiGZ
′
i+σ

2Ipi . Special cases include the

linear random coefficients (RCL) and quadratic random coefficients (RCQ) models. In the linear

case, Zi =
[
1pi ,
(
ti1, . . . , ti,pi

)′] and

G =

[
σ00 σ01

σ10 σ11

]
In the quadratic case, Zi =

[
1pi ,
(
ti1, . . . , ti,pi

)′
,
(
t2i1, . . . , t

2
i,pi

)′]. It is worth noting that when

Zi = 1pi , the random coefficient model corresponds to the compound symmetric model (2.3).

The covariance structure for a subject having measurements taken at measurement times t1 =

1, . . . , tpi = pi is given by

σij =


σ2 + σ00 + 2σ01j + σ11j

2 i = j,

σ00 + σ01 (i+ j) + σ11ij i 6= j
(2.10)

These models permit variance and covariances exhibiting several kinds of time dependency,

including increasing or decreasing variances and correlations of which some are negative while

others are positive. However, this model does not permit variances which are concave-down in

time, and it precludes the variances from being constant if the same-lag correlations are different.

2.2 Shrinking the Sample Covariance Matrix

The simple structure of parametric models is typically accompanied by straightforward inter-

pretation of model coefficients and minimal computational issues. While the choices for para-

metric model structure are seemingly unlimited, specifying the appropriate parametric covariance

structure is challenging even for the experts, and model misspecification can lead to considerably
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biased estimates. From this standpoint, it is prudent to allow the data to drive the formulation of

the dependency structure. Estimates of parametric models are one extreme, typically exhibiting

low variance but potentially high bias. The sample covariance matrix could characterize the other

extreme. An unbiased estimator for the p (p+ 1) /2 parameters of an unstructured covariance ma-

trix, it trades stability for flexibility. Between these poles lies a broad class of estimators which

seeks to balance these two objectives.

Approaches rooted in decision theory yield stable estimators which are scalar multiples of the

sample covariance matrix; these estimators distort the eigenstructure of Σ unless the sample size is

much greater than the dimension, N � p (Dempster, 1972). There is a vast body of work which

addresses the efficient estimation of the covariance matrix of a normal distribution by correcting

the eigenstructure distortion or reducing the number of parameters to be estimated. See Stein

(1975), Lin (1985), Yang and Berger (1994), Daniels and Kass (1999), and Champion (2003).

Stein’s Estimator

Stein (1975) observed that the sample covariance matrix systematically distorts the eigenstruc-

ture of Σ, especially when p is large. His work spurred efforts in the improvement of S, which he

did by simply shrinking its eigenvalues. Given the spectral decomposition of the sample covariance

matrix

S = P̂ Λ̂P̂ ′ =

p∑
i=1

λ̂iêiê
′
i,

he considered estimators of the form

Σ̂ = P̂Φ
(
λ̂
)
P̂ ′, (2.11)

where λ̂ =
(
λ̂1, . . . , λ̂p

)′
, λ̂1 > · · · > λ̂p are the ordered eigenvalues of S, P̂ is the orthogonal

matrix whose ith column is the normalized eigenvector of S corresponding to λ̂i, and Φ
(
λ̂
)

=
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diag (φ1, . . . , φp) is the diagonal matrix where φj
(
λ̂
)

is an estimate of the jth largest eigenvalue

of Σ. Letting φj
(
λ̂
)

= λ̂j corresponds to the usual unbiased estimator S. It is known that λ̂1 and

λ̂p are biased low and high, respectively, so Stein specified Φ
(
λ̂
)

to shrink the eigenvalues toward

central values to counteract the biases of the sample eigenvalues. The modified estimators of the

eigenvalues of Σ are given by φj =
Nλ̂j
αj

, where

αj

(
λ̂
)

= N − p+ 2λ̂j
∑
i 6=j

1

λ̂j − λ̂i
. (2.12)

The Stein estimators φj differ from the sample eigenvalues when they are nearly equal and N/p is

not small. The work of Lin (1985) includes an algorithm to modify any φj’s which are negative

and or do not satisfy φ1 > · · · > φp.

Ledoit and Wolf’s Estimator

The estimator proposed by Ledoit and Wolf (2004) is motivated by the fact that the sample

covariance matrix is unbiased but has high variance - the risk associated with S is considerable

when p � N , and even in cases when the dimension is close to the sample size. In contrast, very

little estimation error is associated with a highly structured estimator of a covariance matrix, like

those presented in Section 2.1, but when the model is misspecified, these can exhibit severe bias.

A natural inclination is to define an estimator as a linear combination of the two extremes, letting

Σ̂ = α1I + α2S, (2.13)

where α1 and α2 are chosen to minimize

1

p
||Σ̂− Σ||2F =

1

p
tr
[(

Σ̂− Σ
)2
]
.
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They show that the optimal αi depend on only four characteristics of the true covariance matrix:

µ = tr (Σ) /p,

α2 = ||Σ− µI||2,

β2 = ||S − Σ||2,

δ2 = ||S − µI||2.

(2.14)

Ledoit and Wolf (2004) give consistent estimators of these quantities, so that substitution of these

in Σ̂ produces a positive definite estimator of Σ. They demonstrate the superiority of their estimator

to several others including the sample covariance matrix and the empirical Bayes estimator (Haff,

1980).

A broad class of estimators aim to stabilize the sample covariance matrix by applying shrink-

age elementwise to each of its entries. Many have explored the use of thresholding, banding, and

tapering to stabilize the covariance matrix, resulting in estimators that are computationally inex-

pensive due to their convenient construction. This convenience, however, comes with a tradeoff:

because the estimators are constructed by elementwise transformations of the sample covariance,

they are not guaranteed to be positive definite. Nonetheless, certain types of elementwise shrink-

age estimators enjoy attractive asymptotic properties (Bickel and Levina, 2008) which, in addition

to their straightforwardness, perhaps offset their finite sample shortcomings.

Banding the Sample Covariance Matrix

Setting certain entries of the sample covariance matrix to zero is one approach to stabilize the

estimator by reducing the dimension of the parameter space. Time series analysis is an example of

the classic situation in which p� N . One typically observes a sample size ofN = 1, with the data

being a single, long realization of the random vector, which severely necessitates a reduction in

the dimension of the parameter space. One way to do this is to assume stationarity of the process,
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which reduces the number of distinct parameters of the p×p covariance matrix Σ from p (p+ 1) /2

to p, which could still be large. Moving average and autoregressive models reduce the number of

parameters in the same way as banding a covariance or inverse covariance matrix (Bickel and

Levina, 2008; Wu and Pourahmadi, 2009). For a given sample covariance matrix S = [sij] and

integer k, 0 < k < p, the k-banded sample covariance matrix is given by

Bk (S) =
[
sij1 (|i− j| ≤ k)

]
. (2.15)

This kind of regularization is ideal when the indices have been arranged so that

|i− j| > k ⇒ σij = 0.

Such structure often implies that variables far apart with respect to time ordering are only weakly

correlated, such as when, for example, yt, t = 1, . . . , p follow a finite heterogeneous moving

average process

yt =
k∑
j=1

θt,t−jεj,

where the εj’s are iid mean zero errors having finite variance. Banding estimators are a special case

of tapering estimators, which have the form

Σ̂ = R ∗ S, (2.16)

where R is a positive definite tapering matrix, and the ∗ operator denotes the Schur matrix multi-

plication (the element-wise matrix product). The Schur product of two positive definite matrices

is also guaranteed to be positive definite, so the tapering estimator’s positive definiteness is depen-

dent on the choice of tapering matrix R. Banding the sample covariance matrix is equivalent to

premultiplying S by

R = [rij] = [1 (|i− j| ≤ k)] ,
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which is not positive definite.

Asymptotic analysis of banding estimators is available when N , p, and k are large. Bickel and

Levina (2008) establish consistency of the banded estimator in the operator norm, and uniform

consistency over the class of “approximately bandable” matrices under a normal likelihood. Con-

vergence requires that log p/N → 0, and they derive an explicit rate of convergence which depends

on the rate at which k grows. Cai et al. (2010) proposed the following tapering estimator of the

sample covariance matrix:

Sω =
[
ωkijsij

]
, (2.17)

where the ωkij are given by

ωkij = k−1
h

[
(k − |i− j|)

+
− (kh − |i− j|)+

]
.

The weights ωkij are indexed with superscript to indicate that they are controlled by a tuning pa-

rameter, k, which can take integer values between 0 and p, the dimension of the covariance matrix.

If kh = k/2 is even, then the weights may be rewritten as

ωij =


1, |i− j| ≤ kh
2− i−j

kh
, kh < |i− j| ≤ k,

0, otherwise.

This expression indicates how the selection of k controls the amount of shrinkage applied to a

particular element of the sample covariance matrix. Elements of S belonging to the subdiagonals

closest to the main diagonal are left unregularized. The shrinkage applied to elements increases

as we move away from the diagonal: a multiplicative shrinkage factor of 2 − i−j
kh

is applied to

elements belonging to subdiagonals kh, . . . , k − 1, k, and elements further than k subdiagonals

from the main diagonal are shrunk to zero. Cai et al. (2010) derived optimal rates of convergence

under the operator norm for their estimator and presented simulations demonstrating that it nearly

uniformly outperforms the banded estimator of Bickel and Levina (2008).
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Thresholding the Sample Covariance Matrix

When both N and p are large, it is reasonable to assume that Σ is sparse, so that many elements

of the covariance matrix are equal to 0. In this case, setting certain elements of the sample estimate

to zero can improve the quality of the estimator. Thresholding was originally a method developed

in nonparametric function estimation, but recently Bickel et al. (2008) and Rothman et al. (2009)

have utilized thresholding for estimating large covariance matrices. Shrinkage and thresholding

estimators can be viewed as the solution to the problem of minimizing a penalized quadratic loss

function, and since the thresholding operator is applied elementwise to the sample covariance S,

these optimization problems are univariate. Rothman et al. (2009) presented a class of generalized

thresholding estimators constructed by applying a thresholding operator to each element of the

sample covariance matrix. This class includes the soft-thresholding estimator given by

Sλ =
[
sign (sij) (sij − λ)

+

]
,

where sij denotes the i-jth entry of the sample covariance matrix, and λ is a penalty parameter

controlling the amount of shrinkage applied to S.

These estimators are simple to compute compared to competitor estimates, like theL1-penalized

likelihood estimator, but they suffer from the lack of guaranteed positive definiteness. However,

similar to the result for banded estimators, Bickel et al. (2008) have established the consistency of

the threshold estimator in the operator norm, uniformly over the class of matrices that satisfy a cer-

tain sparsity requirement. Soft thresholding can result in zeros irregularly placed in the resulting

estimator, which may not be an optimal choice for sparsity pattern when there is a natural ordering

of the variables as with longitudinal data.

Alternately, for estimating the covariance of a random vector which is assumed to have a natural

(time) ordering, several have proposed applying kernel smoothing methods directly to elements of
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the sample covariance matrix or a function of the sample covariance matrix. Zeger and Diggle

(1994) introduced a nonparametric estimator obtained by kernel smoothing the sample variogram

and squared residuals. Yao et al. (2005) applied a local linear smoother to the sample covariance

matrix in the direction of the diagonal and a local quadratic smoother in the direction orthogonal

to the diagonal to account for the presence of additional variation due to measurement error. The

latter work is one of the few nonparametric methods utilizing smoothing in both dimensions of the

covariance matrix, which was an inspiration of sorts for the work we present in Chapter 3. Like

other elementwise shrinkage estimators, however, their proposed estimator is not guaranteed to be

positive definite.

2.3 Matrix Decompositions

The positive definite constraint poses a challenge in most covariance estimation settings. In

this section, we demonstrate the role of matrix decompositions in removing it from the estimation

procedure altogether. These approaches decompose the covariance matrix into its variance and

dependence components, and are closely connected to the use of generalized linear models for

covariance estimation. In this light, this overview serves as a prerequisite to Section 2.4 which will

discuss covariance estimation from the generalized linear modeling perspective.

2.3.1 The Variance-Correlation Decomposition

The variance-correlation decomposition of Σ parameterizes the covariance matrix according to

Σ = DRD, (2.18)

where D = diag
(√

σ11, . . . ,
√
σpp
)

denotes the diagonal matrix with diagonal entries equal to the

square-roots of those of Σ, and R is the corresponding correlation matrix. This parameterization
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enjoys attractive practicality because the standard deviations are on the same scale as the responses,

and because the estimation of D and R can be separated by iteratively fixing one sequence of pa-

rameters to estimate the other. In some applications, one set of parameters may be more important

than the others; the dynamic correlation model presented in Engle (2002) is actually motivated by

the fact that variances (volatilities) of individual assets are more important than their time-varying

correlations.

While the natural log of the diagonal entries of D are unconstrained, the correlation matrix R

is constrained to have unit diagonal entires and off-diagonal entries to be less than or equal to 1 in

absolute value. Consequently, the variance-correlation decomposition does not lend to modeling

its components with the use of covariates. In the literature of longitudinal data analysis and other

areas of application which frequently handle correlated data, preferred models for the variance-

correlation decomposition typically involve structured correlation matrices with a few parameters,

in the interest of parsimony and ensuring positive definiteness (Zimmerman and Núñez-Antón,

1997).

2.3.2 The Spectral Decomposition

The spectral decomposition is the basis of several methods in multivariate statistics, including

principal component analysis and factor analysis (Anderson, 1984; Hotelling, 1933). The spectral

decomposition of a covariance matrix Σ is given by

Σ = PΛP ′ =

p∑
i=1

λieie
′
i, (2.19)

where Λ is a diagonal matrix of eigenvalues λ1, . . . , λp, and P is the orthogonal matrix of normal-

ized eigenvectors, having ei as its ith column. The entries of Λ and P can be interpreted as the

variances and coefficients of the p principal components. The matrix P is constrained by its orthog-

onality, so modeling it within the framework to reduce parameter dimension is inconvenient. In
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spite of this, Chiu et al. (1996) proposed an new unconstrained reparameterization of a covariance

matrix using the spectral decomposition, modeling the matrix logarithm:

log Σ = P (log Λ)P ′ =

p∑
i=1

log (λi) eie
′
i, (2.20)

The components log λi are free but lack any relevant statistical interpretability. Interestingly, this

highlights the tradeoff between the requirements for unconstrained parameterization of covariance

matrices and the statistical interpretability of the new parameters. We further discuss the log-linear

GLM for covariance matrices in Section 2.4.2.

2.3.3 The Cholesky Decomposition

The Cholesky decomposition has received a lot of attention in recent developments in covari-

ance estimation. Unlike the spectral decomposition, it offers an unconstrained parameterization

without sacrificing the interpretability of the components of the decomposition. The Cholesky

decomposition of a positive-definite matrix is given by

Σ = CC ′, (2.21)

where C = [cij] is a unique lower-triangular matrix with positive diagonal entries. This factor-

ization is frequently encountered in optimization techniques and matrix computation (Golub and

Van Loan, 2012). It is difficult to attach any statistical interpretation to the entries of C in this form

(Pinheiro and Bates, 1996). However, statistical interpretation of the diagonal entries of C and the

resulting unit lower-triangular matrix is available by transforming C to a unit lower-triangular ma-

trix, dividing the ith column ofC by its ith diagonal element cii. LettingD1/2 = diag (c11, . . . , cpp),

the standard Cholesky decomposition (2.21) can be written

Σ = CD−1/2DD−1/2C ′ = LDL′, (2.22)
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where L = D−1/2C. This is commonly referred to as the modified Cholesky decomposition

(MCD) of Σ. It is common to write (2.22) in terms of the lower triangular matrix that diagonalizes

Σ:

D = TΣT ′, (2.23)

where T = L−1. Like the orthogonal matrix P in the spectral decomposition, the lower triangular

matrix T diagonalizes Σ, however the entries of T can be written as the coefficients of a particular

regression model, and are therefore unconstrained. The elements of the diagonal matrix D can

also be interpreted as parameters associated with the same model. Let Y = (y1, . . . , yp)
′ denote

a mean zero random vector with positive definite covariance matrix Σ, and consider regressing yt

on its predecessors y1, . . . , yt−1. Let ŷt be the linear least-squares predictor of yt based on previous

measurements yt−1, . . . , y1, and let εt = yt − ŷt denote the corresponding prediction error with

variance V ar (εt) = σ2
t . Standard regression machinery gives us that there exist unique scalars φtj

so that

yt =

{
εt, t = 1∑t−1

j=1
φtjyj + εt, t = 2, . . . , p,

(2.24)

and the mean zero prediction errors are independently distributed. Denote the variance of the

prediction errors by V ar (εt) = σ2
t . The connection between the Cholesky decomposition and the

autoregressive model (2.24) is established by noting that the Cholesky factor contains the negatives

of the regression coefficients and the prediction error variances are the diagonal elements ofD. Let

ε = (ε1, . . . , εp)
′ denote the vector of uncorrelated prediction residuals with

Cov (ε) = D = diag
(
σ2

1 , . . . , σ
2
p

)
.

Then model (2.24) can be written

ε = TY, (2.25)
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where the (t, j) entry of T is −φtj , and the (t, t) entry of D is the variance of the tth prediction

residual: σ2
t = V ar (εt). 

1
−φ21 1
−φ31 −φ32 1

... . . .
−φp1 −φp2 . . . −φp,p−1 1



y1

y2

...
yp

 =


ε1

ε2

...
εp

 (2.26)

Table 2.2 illustrates how the components of a covariance matrix are obtained through succes-

sive regressions. Specifically, this representation demonstrates how modeling a covariance matrix

is equivalent to fitting a sequence of p−1 varying-coefficient and varying-order regression models.

Since the φtj are regression coefficients, for any unstructured covariance matrix, these and the log

variances are unconstrained. The regression coefficients of the model in (2.24) are referred to as

the generalized autoregressive parameters (GARP) and innovation variances (IV) (Pourahmadi,

1999, 2000). The powerful implication of the parallel regression framework of decomposition

(2.23) is the accessibility of the entire portfolio of regression methods for the service of modeling

covariance matrices. Moreover, the estimator Σ̂−1 = T̂ ′D̂−1T constructed from the unconstrained

parameters φtj, σ2
j is guaranteed to be positive definite.

Table 2.2: Autoregressive coefficients and prediction error variances of successive regressions.

y1 y2 y3 . . . yp−1 yp

1
φ21 1
φ31 φ32 1
...

... . . .
...

... . . .
φp1 φp2 . . . . . . φp,p−1 1

σ2
1 σ2

2 . . . . . . σ2
p−1 σ2

p
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2.4 Generalized Linear Models for Covariances

The positive-definiteness constraint and parameter space dimensionality are the major hurdles

plaguing covariance estimation. However, within the context of regression analysis for modeling

the mean vector µ of a random vector Y = (y1, . . . , yp)
′, similar challenges have been handled suc-

cessfully through the use of generalized linear models (GLM). The GLM framework McCullagh

and Nelder (1989) merges numerous seemingly disconnected approaches for modeling the mean of

a distribution. Much of the success of the GLM is due to the use of a link function g (·) and a linear

predictor g (·) = Xβ, where X is a design matrix containing covariates which characterize the

behaviour of the response. The link function and linear predictor together induce an unconstrained

parameterization and reduce the parameter space dimension simultaneously. The covariance ma-

trix, which is defined Σ = E (Y − µ) (Y − µ)′, can be viewed a mean-like parameter, so it is a

natural inclination to exploit the idea of the GLM for covariance estimation. In the GLM setting,

simply applying a link function componentwise to the constrained mean vector µ permits its un-

constrained estimation. Unfortunately, employing the same approach to covariance matrices isn’t

viable since positive-definiteness is a simultaneous constraint on all entries of a matrix.

In addition to providing an avenue for sidestepping the positive definite constraint, the use of

the GLM allows for the explicit use of covariates for estimating a covariance matrix, which is

particularly attractive for longitudinal data or spatial data, where the variables exhibit a natural or-

dering. Extensions of the GLM to large classes of models include nonparametric and generalized

additive models, Bayesian GLM, and generalized linear mixed models; see Hastie and Tibshi-

rani (1990), Dey et al. (2000), and McCulloch and Neuhaus (2001). An analogous framework

for modeling covariance matrices facilitates further developments in covariance estimation from

the Bayesian, nonparametric and other paradigms. Successfully employing a link function for
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unconstrained estimation of a general covariance matrix necessitates decomposing a covariance

matrix into its “variance” and “dependence” components. In the previous section, we discussed

the variance-correlation decomposition, the spectral decomposition, and the Cholesky decomposi-

tion, which factor Σ in such a way, and described the advantages that the Cholesky decomposition

enjoys over the other two.

2.4.1 Linear Models for Covariance

Gabriel (1962) was among the first to implicitly parameterize a multivariate normal distribution

in terms of entries of the precision matrix Σ−1. Dempster (1972) recognized the entries of Σ−1 =

[σij] as the canonical parameters of the exponential family of normal distributions with mean zero

and unknown covariance matrix Σ:

log f
(
Y |Σ−1

)
= −1

2
trΣ−1 (Y ′Y ) + log |Σ|−1/2 − p log

√
π.

Soon thereafter, the simple structures of time series and variance components models motivated

Anderson (1973) to define the class of linear covariance models:

Σ =

q∑
i=1

αqUq, (2.27)

where the Uis are known symmetric matrices and the αis are unknown parameters, restricted to

ensure that Σ is positive definite. This class of models is general enough to include all linear

mixed effects models as well as certain time series and graphical models. For q large enough,

any covariance matrix admits representation of the form (2.27), since one can decompose every

covariance matrix as

Σ =

p∑
i=1

p∑
j=1

σijUij, (2.28)

where Uij is a p × p matrix with a 1 in the (i, j) position, and zeros everywhere else. The lin-

ear model (2.27) can be viewed as modeling the link-transformed covariance g (Σ) =
∑q

i=1
αqUq,
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where g (·) is the identity link. Despite the convenient parameterization, the positive definite con-

straint (2.1) makes estimation an arduous task.

Inducing sparsity by setting certain elements of the covariance matrix or its inverse to zero is

a common approach to reducing the dimensionality of a covariance structure. Inspection of model

(2.27) and the covariance parameterization given in (2.28) makes it easy to see that this can be

achieved by eliminating certain Uij from the covariates in the linear covariance model. On the

extreme end of the sparsity spectrum is the case of independent variables and Σ is diagonal, elimi-

nating all Uij from the linear model covariates for i 6= j. Connection between the linear covariance

model and other models for covariance discussed in previous sections can be established if we

consider intermediary cases, such as classes of stationary moving average (MA) and autoregres-

sive (AR) models introduced in the early times series literature. The MA(q) model corresponds to

a banded covariance matrix, setting

σij = 0 for |i− j| > q, (2.29)

while the AR(k) model corresponds to a banded inverse:

σij = 0 for |i− j| > k. (2.30)

Of course, there are the nonstationary analogues to these classes of models, some of which were

discussed in Section 2.1. We will review others which are related to antedependence models and

Gaussian graphical models. Random variables y1, . . . , yp, which correspond to observation times

t1, . . . , tp, with multivariate normal joint distribution are said to be kth-order antedependent or

AD(k) (Gabriel, 1962) if yt and yt+s+1 are independent given the intervening values yt+1, . . . , yt+s

for t = 1, . . . , k − s − 1 and all s ≥ k. A random vector Y = (y1, . . . , yp) is AD(k) if and only

if its covariance matrix satisfies (2.30). Closely connected are the classes of variable order AD
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models and varying order, varying coefficient autoregressive models (Kitagawa and Gersch, 1985)

in which the coefficients and order of antedependence depend on time.

2.4.2 Log-Linear Covariance Models

The constraint on the αis in (2.27) was eliminated with the introduction of log-linear covariance

models (Chiu et al., 1996; Pinheiro and Bates, 1996). For a general covariance matrix having

spectral decomposition Σ = PΛP ′ its matrix logarithm, log Σ, defined

log Σ = P (log Λ)P ′

is a symmetric matrix with unconstrained entries taking values in <. Application of the log-link

function leads to the log-linear model for Σ:

g (Σ) = log Σ =

q∑
i=1

αiUi, (2.31)

where the Uis are as before in (2.27) and the αis are now unconstrained. The αis, however, now

lack statistical interpretation since g (A) = logA is a highly nonlinear operation. But for diagonal

Σ, log Σ = diag (σ11, . . . , σpp), and model (2.31) reduces to modeling of heterogeneous variances,

which has been extensively studied. Detailed presentation is given in Carroll and Ruppert (1988),

Verbyla (1993) and in references therein.

Rice and Silverman (1991) were the first to pursue nonparametric estimation of the spectral de-

composition for functional data, which arise from experiments which produce observed responses

in the form of curves. See Ramsay (2006), Ramsay and Silverman (2007). The covariance struc-

ture is estimated via functional principal component analysis (fPCA); principal components of

functional data are estimated using penalized least squares of the normalized eigenvectors, subject

to the orthogonality constraint. Additionally, Boente and Fraiman (2000) proposeds kernel-based
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PCA, but maintaining orthogonality of the smooth principal components remains a major compu-

tational challenge in both approaches.

2.4.3 The Cholesky Decomposition as a Generalized Linear Model

The log link resolves the issues presented by the constrained parameter space associated with

the identity link, leading to unconstrained parameterization of a covariance matrix. However, the

parameters of the matrix logarithm lack any meaningful statistical interpretation. The Cholesky

decomposition leads to unconstrained and statistically meaningful reparameterization of the co-

variance matrix so that the ensuing GLM overcomes most of the shortcomings of the linear and

log-linear models.

The nonredundant entries of (T, logD) are unconstrained, allowing them to be modeled using

any desired technique, including parametric, semi- and nonparametric, and Bayesian approaches.

For a random sample of mean zero p-dimensional vectors Y1, . . . , YN from a normal density with

covariance matrix Σ, the form of the likelihood allows for relatively simple computation of the

MLE of the parameters. Up to a constant, the log likelihood satisfies

−2` (Σ|Y1, . . . , YN) =
N∑
i=1

(
log |Σ|+ Y ′i Σ−1Yi

)
= N log |D|+N tr

(
Σ−1S

)
= N log |D|+N tr

(
D−1TST ′

)
,

(2.32)

where S = N−1
∑N

i=1
YiY

′
i . The negative log likelihood (2.32) is quadratic in T for fixed D, so

the MLE for the φtj has closed form. Similarly, the MLE for D for fixed T has closed form. See

Pourahmadi (2000).

While the MLE is flexible under a saturated model, this advantage can be offset with high

variance. Many have attempted to balance the tradeoff between bias and variance by reducing the

dimension of the parameter space under model (2.24) in a number of ways. Because the Cholesky
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decomposition can be viewed as a link function corresponding to a GLM for the covariance matrix,

this can be done in a straightforward way with the use of covariates to elicit parametric models for

φjk and log σ2
j . For example, the entries of T and logD can be modeled as follows:

φjk = x′jkβ,

log σ2
j = z′jγ,

(2.33)

where xtj and zt denote q × 1 and d × 1 vectors of known covariates, and β = (β1, . . . , βq)
′

and γ = (γ1, . . . , γd)
′ are the parameters relating these covariates to the dependence among the

elements of Y and the innovation variances. Covariates most frequently used in the analysis of real

longitudinal data sets are low order polynomials of lag and time. Pourahmadi (1999), Pourahmadi

(2000), and Pan and Mackenzie (2003) parameterize φtj and log σ2
t using covariates

x′jk =
(
1, tj − tk, (tj − tk)2 , . . . , (tj − tk)q−1)′

z′j =
(
1, tj, . . . , t

d−1
j

)′
.

(2.34)

They prescribe methods for identifying models of the form (2.33) using model selection criteria

such as AIC and regressograms, which are a nonstationary analogue of the correlelogram one typ-

ically encounters in the time series literature. Pan and Mackenzie (2003) jointly estimate the mean

and covariance of longitudinal data using maximum likelihood, iterating between estimation of

the mean vector µ, the log innovation variances log σ2
t , and the generalized autoregressive param-

eters φtj. Score functions can be computed by direct differentiation of the normal log likelihood.

Optimization is carried out by solving the score functions via iterative quasi-Newton method.

Modeling the covariance in such a way reduces a potentially high dimensional problem to

something much more computationally feasible; if one models the innovation variances σ2
t simi-

larly using a d-dimensional vector of covariates, the problem reduces to estimating (q + d) uncon-

strained parameters, where much of the dimensionality reduction is a result of characterizing the

GARPs in terms of only the difference between pairs of observed time points, and not the time
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points themselves. This model specification of φ is equivalent to specifying a Toeplitz structure for

Σ.

With the entries of T unconstrained, the Cholesky decomposition is ideal for nonparamet-

ric estimation and regularization methods. Many have alternatively proposed nonparametric and

semiparametric techniques to reduce dimensionality without the risk of model misspecification

often accompanying parametric models. Wu and Pourahmadi (2003) proposed local polynomial

smoothers to individually estimate the subdiagonals of T . The idea of smoothing along the subdi-

agonals rather than down the rows or columns, or viewing T as a bivariate function is analogous

to the successive regressions in (2.24). A similar procedure by Dahlhaus et al. (1997) uses varying

coefficient regression models for each subdiagonal of T :

yt =
t−1∑
j=1

fj (t) yt−j + εt. (2.35)

Wu and Pourahmadi (2003) give details of smoothing and selection of the order k of the autore-

gression under the assumption that the N subjects share common observation times. In the first

step, they derive a raw estimate of the covariance matrix and the estimated covariance matrix is

subject to the modified Cholesky decomposition. In the second step, they apply local polynomial

smoothing to the diagonal elements of D and the subdiagonals of T .

The connection between the entries of T and the family of regression models (2.24) makes

it conceivable that T exhibits sparsity, having some of its entries could be zero or close to zero.

Smith and Kohn (2002) propose a prior distribution that allows for zero entries in T and have

obtained a parsimonious model for Σ without assuming a parametric structure. Similar results

are reported in Huang et al. (2006) using penalized likelihood with L1-penalty to estimate T for

Gaussian data. Similar in spirit to the tapering estimators based on the sample covariance matrix
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(Section 2.2), several have proposed imposing sparsity by banding the Cholesky factor, includ-

ing Wu and Pourahmadi (2003) and Huang et al. (2006). Levina et al. (2008) adaptively band

the Cholesky factor using penalized maximum likelihood estimation. Their novel ‘nested Lasso’

penalty produces an estimator with an adaptive bandwidth for each row of the Cholesky factor.

This structure has more flexibility than regular banding, but, unlike regular Lasso applied to the

entries of the Cholesky factor, results in a sparse estimator for the inverse of the covariance matrix.

Incoherence of Generalized Autoregressive Parameters with Unbalanced Data

The aforementioned methods require balanced longitudinal data; it is unclear how they can be

applied directly to irregular or incomplete data without imputation. In most longitudinal studies,

the functional trajectories of the involved smooth random processes are not directly observable, and

often, the observed data are sparse and irregularly spaced measurements of these trajectories. In

the case that there is no fixed number of measurements and set of associated observation times for

each subject, it is unclear how to define the discrete lag as in the usual formulation of autoregressive

models. This makes treatment of individual subdiagonals of the Cholesky factor or the covariance

matrix itself infeasible. To handle data collected in such a manner requires methods which are

formulated in terms of continuous measurements.

Alternatively, the framework within which the data are generated may assume that a fixed

number of measurements are to be collected at a common set of times for all subjects. In this

case, unbalanced longitudinal data arises as a result of missing observations. To our knowledge,

Huang et al. (2012) was the first to explicitly discuss the problems presented by unbalanced data

within this framework, in the context of model (2.24). These issues are closely related to the

ambiguity surrounding the definition of a discrete lag in the absense of a regular measurement

grid, which Huang et al. (2012) refers to as incoherence in the autoregressive parameters (as well
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as the prediction variances). They demonstrate incoherence with a simple example: let yit denote

the tth repeated measurement on subject i. Consider modeling

yit = φyi,t−1 + εit, (2.36)

for t = 2, 3, 4 with yi1 = εi1, where εi =
(
εi1, . . . , εipi

)′, εi ∼ N (0, I). For a subject with a

complete set of observations, the diagonal matrix of innovation variances is given by D = I4, and

the corresponding T and Σ are given by

T =


1 0 0 0
φ 1 0 0
0 φ 1 0
0 0 φ 1

 , Σ =


1 φ φ2 φ3

φ 1 + φ2 φ2 + φ3 φ3 + φ4

φ2 φ2 + φ3 1 + φ2 + φ4 φ+ φ3 + φ5

φ3 φ3 + φ4 φ+ φ3 + φ5 1 + φ2 + φ4 + φ6


Consider a pair of subjects, with Subject 1 having p1 = 3 measurements at t = 1, 2, 4, and Subject

2 having p2 = 3 measurements at t = 1, 3, 4. The covariance matrix for Subject 1, Σ1, can

be obtained by deletion of the third row and column of Σ, and similarly Σ2 can be obtained by

deletion of the second row and column of Σ. The Cholesky decompositions of the subject-specific

covariance matrices are given by

T1 =

 1 0 0
−φ 1 0
0 −φ2 1

 , D1 =

1 0 0
0 1 0
0 0 1 + φ2

 ,
T2 =

 1 0 0
−φ2 1 0

0 −φ 1

 , D2 =

1 0 0
0 1 + φ2 0
0 0 1

 ,
The parameter φijk denotes the coefficient associated with regressing the jth measurement on

the kth measurement taken on subject i. For example, φi21 is interpreted as the coefficient when

regressing the second measurement on the first, they take different values for each subject. For

Subject 1, the measurement at time 2 is regressed on the measurement at time 1, and for Subject 2,

the measurement at time 3 is regressed on the measurement at time 1. This results in a discrepancy

between the autoregressive coefficients, which are given by φ121 = φ and φ221 = φ2. There is

similar discordance between the innovation variances.
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This incoherence indicates that a naive approach to estimating the regression model (2.24) is

inappropriate when the data are unbalanced. Huang et al. (2012) assume that there is a common set

of observation times define a “grand” covariance matrix Σ, which is common to all subjects, the

measurements on subject i can be modeled with covariance matrix Σi which is a principal minor

of Σ. They propose handling data from longitudinal studies with dropouts and intermittent missing

values by imputation, using the EM algorithm when the data are missing at random. Huang et al.

(2007) employ a similar approach, assuming the same framework surrounding the data generation

as Huang et al. (2012). They jointly model the mean and covariance matrix of longitudinal data

using basis function expansions. They treat the subdiagonals of T as smooth functions which they

approximate using B-splines, and carry out estimation via maximum (normal) likelihood. They

regularize the estimated covariance matrix through the choice of k, the number of nonzero subdi-

agonals, and the total number of basis functions used to approximate the k smoothed diagonals,

which are selected using Bayesian information criterion (BIC).
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Chapter 3: A Reproducing Kernel Hilbert Space Framework for Covariance

Estimation

We propose an alternate route for estimating the Cholesky decomposition of a covariance ma-

trix when the data are unbalanced. In this chapter, we present a functional varying coefficient

model to extend model (2.24). The functional varying coefficient model serves as a flexible alter-

native to parametric models for the GARPs and accommodates unbalanced data without the need

for imputation. We propose a blueprint for the construction of an estimator of a covariance matrix

for longitudinal data by modeling T as smooth two-dimensional surface, and present a reproduc-

ing kernel Hilbert space framework for estimating the functional components of the Cholesky

decomposition. Chapter 4 demonstrates multidimensional smoothing with penalized B-splines as

a flexible and computationally convenient alternative to the Hilbert space methods.

There has been substantial interest recently in the use of varying coefficient models for extend-

ing parametric models for longitudinal data (Noh and Park, 2010; Şentürk et al., 2013; Şentürk

and Müller, 2008; Chiang et al., 2001; Hoover et al., 1998; Fan and Zhang, 1999). Given a sample

of repeated measurements on N independent subjects, it is convenient to model the observed data

collected on an individual as sampled from a realization of a continuous-time stochastic process

Y (t). Allowing individual-specific observation times, let ti =
{
ti1 < · · · < ti,pi

}
denote the time
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points at which the sequence of measurements on the ith subject were taken, and let

Yi =
(
yi1, . . . , yi,pi

)′
denote the corresponding measurements, i = 1, . . . , N . We assume that measurement times are

drawn from some distribution having compact domain T ; without loss of generality, we take T =

[0, 1]. We use varying coefficient models to extend the linear model corresponding to the Cholesky

decomposition (2.24). Consider the following model as a generalization of (2.24):

y (tij) =
∑
k<j

φ̃ (tij, tik) y (tik) + ε (tij) ,
i = 1, . . . , N
j = 2, . . . , pi,

(3.1)

where the prediction errors ε (t) follow a mean zero Gaussian process, with variance function

σ2 (t). The coefficient associated with regressing the measurement taken at time t on the measure-

ment taken at time s is given by the value of the autoregressive coefficient function evaluated at

(t, s):

φ̃ (t, s) , 0 ≤ s < t ≤ 1.

Under Model (3.1), the negative log likelihood satisfies

−2`
(
φ, σ2|Y1, . . . , YN

)
=

N∑
i=1

pi∑
j=2

log σ2
ij +

N∑
i=1

pi∑
j=2

1

σ2
ij

(
yij −

∑
k<j

φ̃ (tij, tik) yik

)2

, (3.2)

where σ2
ij = σ2 (tij).

A number of methods have been developed for estimating the varying coefficients for the mean

trajectory of repeated measurements. Wu and Pourahmadi (2003) and Dahlhaus et al. (1997) have

explored one dimensional varying coefficient models for the Cholesky decomposition (2.35) for

balanced longitudinal data. Writing the varying coefficient as a bivariate function, we can model

unbalanced longitudinal data, and even accommodate longitudinal data for which there is no asso-

ciated fixed set of observation times. Our goal is to use bivariate smoothing to estimate φ̃ (t, s) for
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0 ≤ s < t ≤ 1. In similar fashion, we estimate the innovation variance function σ2 (t), 0 ≤ t ≤ 1

by smoothing the squared prediction residuals as a function of t.

This model formulation grants access to the abundance of regularization techniques that are ac-

cessible in the usual function estimation setting. Nonparametric models are often used for “check-

ing” or eliciting parametric models; see Cox et al. (1988) and Liu and Wang (2004). In this light,

it is convenient to parameterize φ̃ so that the fitted function can easily be used as a diagnostic tool

or for suggesting parsimonious or structured models for the Cholesky decomposition. Given the

prevalence of stationary covariance models in the applied literature, including those specifying the

elements of T as a function of the lag between observations, we take a convenient parameterization

of the varying coefficient function with inputs

l = t− s and m =
t+ s

2
, (3.3)

and model

φ (l,m) = φ

(
t− s, 1

2
(s+ t)

)
= φ̃ (t, s) , (3.4)

where l is the continuous analogue of the usual discrete lag between time points t and s, and m is

its orthogonal direction. Stationary covariance models specify that the covariance between a pair

of measurements taken at times t and s can be written as a function of |t− s| only, so that

Cov (y (t) , y (s)) = G (|t− s|)

for some positive definite function G. Model (3.1) corresponds to a stationary process when φ

can be written as a function of l only and the innovation variances are constant in t. Taking

stationarity as a form of simplicity or parsimony in covariance models, our approach is to regularize

nonstationarity in the autoregressive varying coefficient and the innovation variance function so

that simultaneous application of heavy penalization to both functions results in models that are

close to stationary covariance matrices.
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For estimation of φ, we employ the smoothing spline framework which can naturally incorpo-

rate structural differences in the functional components into modeling (see Kimeldorf and Wahba

(1971) and Wahba (1990) for comprehensive presentation). To enhance the statistical interpretabil-

ity of model parameters, we decompose φ into functional components similar to the notion of the

main effect and the interaction terms in classical analysis of variance. We adopt the smoothing

spline analogue of the classical ANOVA model proposed by Gu (2013), and estimation is achieved

through similar computational strategies.

3.1 The Function Space for Smoothing Spline ANOVA Models

Smoothing spline ANOVA models (Gu, 2002) are a versatile family of smoothing methods

that are applicable for both univariate and multivariate problems. These models are rooted in the

theory of reproducing kernel Hilbert spaces and have been studied extensively for nonparametric

function estimation (see Aronszajn (1950), Wahba (1990), and Berlinet and Thomas-Agnan (2011)

for detailed examinations). However, to our knowledge, they have received little attention in the

context of covariance modeling. Before we demonstrate the estimation of φ using a smoothing

spline ANOVA model, we first must establish some notation and review the relevant mathematical

details of reproducing kernel Hilbert spaces.

3.1.1 Properties of Reproducing Kernel Hilbert Spaces

A Hilbert space H of functions on a set χ with inner product 〈·, ·〉H is defined as a complete

inner product linear space. For each x ∈ χ, let [x] map f ∈ H to f (x) ∈ <, which is known as

the evaluation functional at x. A Hilbert space is called a reproducing kernel Hilbert space if the

evaluation functional [x] f = f (x) is continuous in H for all x ∈ χ. The Reisz Representation

Theorem gives that there exists Kx ∈ H, the representer of the evaluation functional [x] (·), such

that 〈Kx , f〉H = f (x) for all f ∈ H. See Theorem 2.2 in Gu (2013).
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The symmetric, bivariate function K (x1, x2) = Kx2
(x1) = 〈Kx1

, Kx2
〉H is called the repro-

ducing kernel (RK) ofH. The RK satisfies that for every x ∈ χ and f ∈ H,

I. K (·, x) ∈ H

II. f (x) = 〈f,K (·, x)〉H

The second property is called the reproducing property of K. Every reproducing kernel uniquely

determines the RKHS, and in turn, every RKHS has unique reproducing kernel. See Theorem 2.3

in Gu (2013). The kernel satisfies that for any {x1, . . . , xn1
}, {u1, . . . , un2

} ∈ χ and {a1, . . . , an1
},

{b1, . . . , bn2
} ∈ <,

〈
n1∑
i=1

aiK (·, xi) ,
n2∑
j=1

bjK (·, uj)〉H =
∑
i

∑
j

aibjK (xi, uj) . (3.5)

The representer of any bounded linear functional can be obtained from the reproducing kernel K.

3.1.2 The Smoothing Spline Model Space

Suppose that J (f) is a penalty functional defined on H measuring the roughness of f . When

J (f) is in the form of a squared semi-norm, it induces an orthogonal decomposition of H. Let

H0 = {f : J (f) = 0} denote the null space of J , and consider the decomposition

H = H0 ⊕H1,

where H1 is the subspace of H with J (f) as its squared norm. For the cubic smoothing spline

defined on χ = [0, 1], the roughness penalty corresponds to

J (f) =

∫ 1

0

(f ′′ (x))
2
dx. (3.6)

The penalty on the squared second derivative induces a decomposition of the function space

C(2) [0, 1] =

{
f :

∫ 1

0

(f ′′ (x))
2
dx <∞

}
,
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which is a Hilbert space if equipped with inner product

〈f, g〉H = (M0f) (M0g) + (M1f) (M1g) +

∫ 1

0

f ′′ (x) g′′ (x) dx, (3.7)

where the ith order differential operator Mi is given by Mif =
∫ 1

0
f (i) (x) dx.

Given inner product (3.7), the reproducing kernel K can be expressed in terms of the scaled

Bernoulli polynomials
{
kj (x) = 1

j!
Bj (x)

}
for x ∈ [0, 1], where Bj is defined according to:

B0 (x) = 1

d

dx
Bj (x) = jBj−1 (x) , j = 1, 2, . . .

One can verify that
1∫
0

k
(j)
i (x) dx = δij for i, j = 0, 1, where δij is the Kronecker delta. This

implies that {k0, k1} form an orthonormal basis for H0 =
{
f ∈ C(2) [0, 1] : f ′′ = 0

}
under the

inner product 〈f, g〉0 = (M0f) (M0g) + (M1f) (M1g) and that

K0 (x, y) = k0 (x) k0 (y) + k1 (x) k1 (y)

is the reproducing kernel for H0. One can further decompose H0 into the tensor sum of the sub-

spaces spanned by k0 and k1:

H0 = H00 ⊕H01 = {f : f ∝ 1} ⊕ {f : f ∝ k1} , (3.8)

where the corresponding reproducing kernels for each subspace are given by 1 and k1 (x) k1 (y),

respectively. The subspaces of H which are orthogonal to H0 are comprised of functions f satis-

fying

H1 = {f : M0f = M1f = 0,

∫ 1

0

(f ′′ (x))
2
dx <∞}.

One can show that the representer for the evaluation functional [x] (·) in H1 with inner product

〈f, g〉H1
=
∫ 1

0
f ′′ (x) g′′ (x) dx is given by the function

K1 (x, y) = k2 (x) k2 (y)− k4 (x− y) . (3.9)

39



See Example 2.3.3 in Gu (2002) for proof. It is obvious that H0

⋂
H1 = {0}, so the converse of

Theorem 2.5 in Gu (2013) gives us that the reproducing kernel for the full space

H = H0 ⊕H1, (3.10)

is given by K = K0 + K1. Using the decomposition of H0 into the constant and linear subspaces

in (3.8), we can further decomposeH into

H = H00 ⊕H01 ⊕H1, (3.11)

where H01 ⊕H1 forms the contrast in a one-way ANOVA decomposition with averaging operator

Af =
∫ 1

0
f (x) dx. The reproducing kernel K = K00 + K01 + K1 can be defined in terms of the

corresponding reproducing kernels

K00 (x, y) = 1,

K01 (x, y) = k1 (x) k1 (y) , and

K1 (x, y) = k2 (x) k2 (y)− k4 (x− y) .

(3.12)

The kernel K00 generates the “mean” space. Together, the kernels K01 and K1 generate the “con-

trast” space, with K01 contributing to the “parametric contrast” and K1 to the “nonparametric

contrast.”

3.1.3 The Tensor Product Smoothing Spline Model Space

To estimate a bivariate function using the ANOVA decomposition given in (3.11), one may

construct a tensor product reproducing kernel Hilbert space. The space can be constructed through

the reproducing kernel, which is constructed using the reproducing kernels on each of the marginal

domains. One-way ANOVA decompositions on the marginal domains naturally induce an ANOVA

decomposition on the product domain. It can be shown that the products of reproducing kernels

on the marginal domains form reproducing kernels on the product domain; see Theorem 2.6 in Gu

(2013).
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LetH[1] andH[2] denote reproducing kernel Hilbert spaces on marginal domains [0, 1] equipped

with corresponding reproducing kernels K1 and K2, each defined as in (3.12). The RKHS corre-

sponding to the tensor product smoothing spline is given by

H = H[1] ⊗H[2]

and has reproducing kernel

K (x,y) = K1 (x1, y1)K2 (x2, y2) ,

where x = (x1, x2) and y = (y1, y2).

The tensor product space can be constructed with nine tensor sum terms, which are defined by

the decomposition of the marginal subspaces

H[i] = H00[i] ⊕H01[i] ⊕H1[i], i = 1, 2.

Table 3.1 gives the tensor sum terms defining the decomposition of H and the functional compo-

nents corresponding to each subspace. The reproducing kernels for each of the subspaces are given

in Table 3.2.
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Table 3.1: Construction of the tensor product cubic spline function space from marginal subspaces
H[1], H[2] and the corresponding functional components, where “n” and “p” mean “parametric”
and “nonparametric,” respectively.

H00[2] H01[2] H1[2]

H00[1] H00[1] ⊗H00[2] H00[1] ⊗H01[2] H00[1] ⊗H1[2]

H01[1] H01[1] ⊗H00[2] H01[1] ⊗H01[2] H01[1] ⊗H1[2]

H1[1] H1[1] ⊗H00[2] H1[1] ⊗H01[2] H1[1] ⊗H1[2]

{1} {k1} H1[2]

{1} mean p-main effect np-main effect

{k1} p-main effect p× p-interaction p× np-interaction

H1[1] np-main effect np× p-interaction np× np-interaction

Table 3.2: Reproducing kernels corresponding to the subspaces for the cubic tensor product
smoothing spline given in Table 3.1.

Subspace Reproducing kernel
H00[1] ⊗H00[2] 1

H01[1] ⊗H00[2] k1 (x1) k1 (y1)

H00[1] ⊗H01[2] k1 (x2) k1 (y2)

H01[1] ⊗H01[2] k1 (x1) k1 (y1) k1 (x2) k1 (y2)

H1[1] ⊗H00[2] k2 (x1) k2 (y1)− k4 (x1 − y1)

H00[1] ⊗H1[2] k2 (x2) k2 (y2)− k4 (x2 − y2)

H1[1] ⊗H01[2] [k2 (x1) k2 (y1)− k4 (x1 − y1)] k1 (x2) k1 (y2)

H01[1] ⊗H1[2] k1 (x1) k1 (y1) [k2 (x2) k2 (y2)− k4 (x2 − y2)]

H1[1] ⊗H1[2] [k2 (x1) k2 (y1)− k4 (x1 − y1)] [k2 (x2) k2 (y2)− k4 (x2 − y2)]
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The penalty functional driving the ANOVA decomposition of the marginal subspaces can be

generalized to penalize the mth order derivative by letting

J (f) =

∫ 1

0

(
f (m) (x)

)2
dx.

For example, letting m = 1 corresponds to the space for a linear smoothing spline, where the null

space of the penalty functional is spanned by constant functions. For detailed derivations of the

smoothing spline ANOVA decomposition with arbitrary penalty order m, we refer the reader to

Chapter 2 in Gu (2013).

3.1.4 A General Form for Multiple-Term Reproducing Kernel Hilbert Spaces

The previous construction of the RKHS for the tensor product cubic spline space contains

multiple tensor sum terms. We can write

H =
⊕
β

Hβ, (3.13)

where β is a generic index. The subspaces Hβ have reproducing kernels Kβ and corresponding

inner products 〈fβ, gβ〉Hβ, where fβ = Pβf denotes the projection of f into the subspace Hβ. For

example, one can write the RKHS for the tensor product smoothing spline according to (3.13)

using the subspaces given in Table 3.2.

The subspaces Hβ are independent modules, and the inner products 〈fβ, gβ〉Hβ are not neces-

sarily comparable between subspaces. To standardize across the subspaces, an inner product in H

can be specified via

〈f, g〉H =
∑
β

θ−1
β 〈f, g〉Hβ . (3.14)

where θβ ∈ (0,∞) are additional smoothing parameters. The corresponding reproducing kernel

forH is given by

K =
∑
β

θβKβ, (3.15)
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which can be used to specify the penalty J (f). Subspaces which don’t contribute to J (f) form

H0 = {f : J (f) = 0}, the null space of J (f). The subspaces contributing to J (f) form the

space H1 = H 	H0, in which J (f) is a squared norm. For this specification, denote the penalty

constructed as such by

J (f) =
∑
β

θ−1
β 〈fβ, fβ〉Hβ =

∑
β

θ−1
β Jβ (fβ) . (3.16)

The {θβ} are implicit in notation henceforth to permit ease of exposition.

3.2 A Reproducing Kernel Hilbert Space Framework for the Generalized
Autoregressive Varying Coefficient

We can construct the model space for the generalized autoregressive varying coefficient φ using

the previous recipe for constructing a tensor product RKHS. Let H[l] denote the RKHS for the

domain of l ∈ [0, 1] with reproducing kernel K[l], and similarly, let H[m] denote the RKHS for the

domain of m ∈ [0, 1] with reproducing kernel K[m]. The function space for φ (l,m) ∈ H

H = H[l] ⊗H[m] = H0 ⊕H1

is obtained as in Section 3.1, with reproducing kernel K = K[l]K[m].

Let vijk =
(
tij − tik, 1

2
(tij + tik)

)
= (lijk,mijk), vijk ∈ V = [0, 1]2 denote the tuple cor-

responding to the transformed pair of observation times. Fixing the innovation variances σ2
ij =

σ2 (tij) in (3.2), the negative log likelihood satsifies

−2`
(
φ|Y1, . . . , YN , σ

2
)

=
N∑
i=1

pi∑
j=2

1

σ2
ij

(
yij −

∑
k<j

φ (vijk) yik

)2

. (3.17)

The roughness penalty associated with reproducing kernel K can be written as J (φ) = ||P1φ||2,

the squared norm of the projection of φ onto H1. Appending this to (3.17), the penalized negative
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log likelihood may be written

−2`
(
φ|Y1, . . . , YN , σ

2
)

+ λJ (φ) =
N∑
i=1

pi∑
j=2

1

σ2
ij

(
yij −

∑
k<j

φ
(
v
ijk

)
yik

)2

+ λ||P1φ||2. (3.18)

3.2.1 A Representer Theorem

Wahba (1990) established an explicit form for the minimizer of the penalized sums of squares in

the usual function estimation setting. The following theorem establishes the form for the minimizer

of the penalized negative log likelihood (3.18) for the varying coefficient model (3.1). Define

V =
⋃
i,j,k

{vijk} ≡ {v1, . . . ,v|V |}

as the set of unique within-subject pairs of observation times.

Theorem 3.2.1. Let {ν1, . . . , νN0
} spanH0, the null space of J (φ) = ||P1φ||2. Then the minimizer

φλ of (3.18) is given by

φλ (v) =

N0∑
i=1

diνi (v) +

|V |∑
j=1

cjK1 (vj,v) , (3.19)

where K1 (vj,v) denotes the reproducing kernel for H1 evaluated at vj, the jth element of V ,

viewed as a function of v.

The proof, which is similar in spirit to the proof of Theorem 1.3.1 in Wahba (1990), can be found

in Appendix A.

3.2.2 Model Fitting

Let Y denote the vector of length nY =
∑

i
pi − N constructed by stacking the N observed

response vectors Y1, . . . , YN less their first element yi1 one on top of each other:

Y = (Y ′1 , Y
′

2 , . . . , Y
′
N)
′ (3.20)

=
(
y12, y13, . . . , y1p1

, . . . , yN2, . . . , yNpN
)′
. (3.21)
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Define Xi to be the (pi − 1) × |V | matrix containing the covariates necessary for regressing each

measurement yi2, . . . , yi,pi on its predecessors as in Model (3.1), and stack these on top of one

another to obtain

X =


X1

X2

...
XN

 , (3.22)

which has dimension nY × |V |. Using the Representer Theorem in (3.19), the penalized negative

log likelihood in (3.18) can be expressed as

−2`
(
φ|Y1, . . . , YN , σ

2
)

+ λJ (φ) = ||D−1/2
(
Y −X

(
Bd+K

V
c
))
||2 + λc′K

V
c, (3.23)

where the (i, j) entry of the |V | × |V | matrix K
V

is given by K1 (vi,vj), and the |V | × N0 matrix

B has (i, j) element equal to νj (vi). The diagonal matrix D holds the nY innovation variances

σ2
ij. The following examples demonstrate how to construct the subject-specific design matrices

X1, . . . , XN when observation times are common across all subjects and when observation times

are subject-specific.

Example 1. Construction of Xi with complete data

Construction of the autoregressive design matrix Xi is straightforward in the case that there

are an equal number of measurements on each subject at a common set of measurement times

t1, . . . , tp. When complete data are available for measurement times t1, . . . , tp,

Xi =


yi1 0 0 . . . . . . 0
0 yi1 yi2 . . . 0
... . . .
0 0 . . . yi1 . . . yi,p−1

 (3.24)

for all i = 1, . . . , N . Note that this design matrix specification does not require that measurement

times be regularly spaced.
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Example 2. Construction of Xi with incomplete data

We demonstrate the construction of the autoregressive design matrices when subjects do not

share a universal set of observation times for N = 2; the construction extends naturally for an

arbitrary number of trajectories. Let subjects have corresponding sample sizes p1 = 4, p2 = 4,

with measurements on subject 1 taken at t11 = 0, t12 = 0.2, t13 = 0.5, t14 = 0.9 and on subject 2

taken at t21 = 0, t22 = 0.1, t23 = 0.5, t24 = 0.7. Then the unique within-subject pairs of observation

times (t, s) such that 0 ≤ s < t ≤ 1 are given by

i 2 1 1, 2 2 1 2 2 2 1 1 1
t 0.1 0.2 0.5 0.5 0.5 0.7 0.7 0.7 0.9 0.9 0.9
s 0.0 0.0 0.0 0.1 0.2 0.0 0.1 0.5 0.0 0.2 0.5

Here, the top row indicates which subject was observed at each pair (t, s). This gives that

V = {v121, . . . ,v143}
⋃
{v221, . . . ,v243} = {v1, . . . ,v11}, where the distinct observed v = (l,m)

are

l 0.10 0.20 0.50 0.40 0.30 0.70 0.60 0.20 0.90 0.70 0.40
m 0.05 0.10 0.25 0.30 0.35 0.35 0.40 0.60 0.45 0.55 0.70

Then a potential construction of the autoregressive design matrix for subject is given by:

X1 =

0 y11 0 0 0 0 0 0 0 0 0
0 0 y11 0 y12 0 0 0 0 0 0
0 0 0 0 0 0 0 0 y11 y12 y13


and similarly, for subject 2:

X2 =

y21 0 0 0 0 0 0 0 0 0 0
0 0 y21 y22 0 0 0 0 0 0 0
0 0 0 0 0 y21 y22 y23 0 0 0


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Finding the Solution

Defining Ỹ = D−1/2Y , B̃ = D−1/2XB, and K̃
V

= D−1/2XK
V

, the penalized negative log

likelihood (3.23) may be written

−2`
(
c, d|Ỹ, B̃, K̃

V

)
+ λJ (φ) =

[
Ỹ − B̃d− K̃

V
c

]′[
Ỹ − B̃d− K̃

V
c

]
+ λc′KV c. (3.25)

Taking partial derivatives with respect to d and c and setting them equal to zero yields normal

equations:

B̃′B̃d+ B̃′K̃
V
c = B̃′Ỹ

K̃ ′
V
B̃d+ K̃ ′

V
K̃

V
c+ λK

V
c = K̃ ′

V
Ỹ.

(3.26)

Thus, for fixed smoothing parameters, the solution φ is obtained by finding c and d which satisfy[
B̃′B̃ B̃′K̃

V

K̃ ′
V
B̃ K̃ ′

V
K̃

V
+ λK

V

] [
d
c

]
=

[
B̃′Ỹ

K̃ ′
V
Ỹ

]
. (3.27)

Fixing smoothing parameters λ and θβ (hidden in K
V

and K̃
V

if present), assuming that K̃
V

is full column rank, (3.27) can be solved by the Cholesky decomposition of the (N0 + |V |) ×

(N0 + |V |) matrix, followed by forward and backward substitution. See Golub and Van Loan

(2012). Singularity of K̃
V

demands special consideration. Write the Cholesky decomposition[
B̃′B̃ B̃′K̃

V

K̃ ′
V
B̃ K̃ ′

V
K̃

V
+ λK

V

]
=

[
C ′1 0
C ′2 C ′3

] [
C1 C2

0 C3

]
(3.28)

where B̃′B̃ = C ′1C1, C2 = (C ′1)
−1 B̃′K̃

V
, and C ′3C3 = λK

V
+ K̃ ′

V

(
I − B̃

(
B̃′B̃

)−1

B̃′
)
K̃

V
.

Using an exchange of indices known as pivoting, one may write

C3 =

[
H1 H2

0 0

]
=

[
H
0

]
,

where H1 is nonsingular. Define

C̃3 =

[
H1 H2

0 δI

]
, C̃ =

[
C1 C2

0 C̃3

]
; (3.29)
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then

C̃−1 =

[
C−1

1 −C−1
1 C2C̃

−1
3

0 C̃−1
3

]
. (3.30)

Premultiplying (3.28) by (C̃ ′)−1, straightforward algebra gives

[
I 0

0 (C̃ ′3)
−1C ′3C3C̃

−1
3

] [
d̃
c̃

]
=

 (C ′1)
−1B̃′Ỹ

(C̃ ′3)
−1K̃ ′

V

(
I − B̃

(
B̃′B̃

)−1

B̃′
)
Ỹ

 (3.31)

where
(
d̃′ c̃′

)′
= C̃ ′ (d c)′. Partition C̃3 =

[
F L

]
; then HF = I and HL = 0. So

(C̃ ′3)
−1C ′3C3C̃

−1
3 =

[
F ′

L′

]
C ′3C3

[
F L

]
=

[
F ′

L′

]
H ′H

[
F L

]
=

[
I 0
0 0

]
.

IfL′C ′3C3L = 0, thenL′K̃ ′
V

(
I − B̃

(
B̃′B̃

)−1

B̃′
)
K̃

V
L = 0, soL′K̃ ′

V

(
I − B̃

(
B̃′B̃

)−1

B̃′
)
Ỹ =

0. Thus, the linear system has form I 0 0
0 I 0
0 0 0

 d̃c̃1

c̃2

 =

∗∗
0

 , (3.32)

which can be solved, but with c̃2 arbitrary. One may perform the Cholesky decomposition of (3.27)

with pivoting, replace the trailing 0 with δI for appropriate value of δ, and proceed as if K̃
V

were

of full rank.

Solving for the coefficients gives[
d̂
ĉ

]
= C̃−1(C̃ ′)−1

[
B̃′

K̃ ′
V

]
Ỹ. (3.33)

It follows that ̂̃Y = B̃d̂+ K̃
V
ĉ =

[
B̃ K̃

V

]
C̃−1(C̃ ′)−1

[
B̃′

K̃ ′
V

]
Ỹ = Ã

λ,θỸ, (3.34)
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where

Ã
λ,θ =

[
B̃ K̃

V

]
C̃−1(C̃ ′)−1

[
B̃′

K̃ ′
V

]
= G+ (I −G) K̃

V

[
K̃ ′

V
(I −G) K̃

V
+ λK

V

]−1

K̃ ′V (I −G) ,

(3.35)

for G = B̃
(
B̃′B̃

)−1

B̃′.

3.2.3 Smoothing Parameter Selection

By varying smoothing parameters λ and θβ, the minimizer φλ of (3.27) defines a family of po-

tential estimates. In practice, we need to choose a specific estimate from the family, which requires

effective methods for smoothing parameter selection. We consider two criteria that are commonly

used for smoothing parameter selection in the context of smoothing spline models for longitudinal

data. The first score is an unbiased estimate of a relative loss and assumes known variances σ2
t .

The unbiased risk estimate has attractive asymptotic properties; see Gu (2013) for a comprehen-

sive examination. The second score, the leave-one-subject-out cross validation (LosoCV) score,

provides an estimate of the same loss without assuming a known variance function. We review

a computationally convenient approximation of the LosoCV score proposed by Xu et al. (2012),

who demonstrate the shortcut score’s asymptotic optimality. To simplify notation for the initial

presentation, we only make explicit the dependence of estimates and their components on λ and

conceal any dependence on θβ.

Unbiased Risk Estimate

Define Ỹ , B̃, and K̃ as before. Let ε̃ = D−1/2ε denote the vector of length nY =
∑N

i=1
pi −N

containing the standardized prediction errors ε̃ij ∼ N (0, 1). Let µ = E [Y |X] = XΦ denote the

mean vector of Y conditional on its predecessors, where Φ is the |V | × 1 vector resulting from the
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evaluation of φ at v1, . . . ,v|V | ∈ V . The elements of µ =
(
µ11, . . . , µNpN

)′ are given by

µij = E [yij|yi1, . . . , yi,j−1]

=
∑
k<j

φ (vijk) yik, i = 1, . . . , N, j = 2, . . . , pi.

Let X̃ = D−1/2X , and let µ̃ = E
[
Ỹ |X̃

]
= X̃Φ denote the conditional mean vector of the

standardized observations. We can assess ˆ̃Yλ, an estimate of the mean of Ỹ based on observed data

{yij} using the loss function

L (λ) =
N∑
i=1

pi∑
j=1

(
ˆ̃yij − µ̃ij

)2

= || ̂̃Y − µ̃||2.
(3.36)

Writing ̂̃Y = Ã
λ,θỸ , straightforward algebra yields that

L (λ) = µ̃′
(
I − Ã

λ,θ

)2

µ̃− 2µ̃′
(
I − Ã

λ,θ

)2

Ã
λ,θ ε̃+ ε̃′Ã2

λ,θ ε̃ (3.37)

Define the unbiased risk estimate

U (λ) = Ỹ ′
(
I − Ã

λ,θ

)2

Ỹ + 2 tr
(
Ã
λ,θ

)
.

Adding µ̃ to and subtracting µ̃ from the quadratic terms, one can verify with straightforward algebra

that

U (λ) =
(
Ỹ − µ̃+ µ̃− Ã

λ,θỸ
)′ (

Ỹ − µ̃+ µ̃− Ã
λ,θỸ

)
+ 2 tr

(
Ã
λ,θ

)
=
(
Ã
λ,θỸ − µ̃

)′ (
Ã
λ,θỸ − µ̃

)
+ ε̃′ε̃+ 2ε̃′

(
I − Ã

λ,θ

)
µ̃− 2

(
ε̃′Ã

λ,θ ε̃− tr
(
Ã
λ,θ

))
.

This gives

U (λ)− L (λ)− ε̃′ε̃ = 2ε̃′
(
I − Ã

λ,θ

)
µ̃− 2

(
ε̃′Ã

λ,θ ε̃− tr
(
Ã
λ,θ

))
,
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where ε̃ = (ε̃11, . . . , ε̃Npn)′ denotes the vector of standardized errors ε̃ij = σ−2
ij

[
yij −

∑
k<j

φ (vijk) yik
]
.

This shows that U (λ) is unbiased for the relative loss L (λ) + ε̃′ε̃. Under mild conditions on the

risk function

R (λ) = E [L (λ)] ,

one can establish that U is also a consistent estimator. See Chapter 3 of Gu (2013) for a formal

theorem and proof.

Leave-one-subject-out Cross Validation

The conditions under which the the cross validation and generalized cross validation scores tra-

ditionally used for smoothing parameter selection yield desirable properties generally do not hold

when the data are clustered or longitudinal in nature. Instead, the leave-one-subject-out (LosoCV)

cross validation score has been widely used for smoothing parameter selection for semiparametric

and nonparametric models for longitudinal or functional data. The LosoCV criterion is defined as

Vloso (λ) =
1

N

N∑
i=1

(
Ỹi − ̂̃µ[−i]

i

)′ (
Ỹi − ̂̃µ[−i]

i

)
(3.38)

where ̂̃µ[−i]
i is the estimate of E

[
Ỹi|Xi

]
based on the data when Ỹi is omitted. Intuitively, the

LosoCV score is appealing because it preserves any within-subject dependence by leaving out all

observations from the same subject together in the cross-validation. However, despite its prevalent

use, theoretical justifications for its use have not been established. In their seminal work, Rice and

Silverman (1991) were the first to present a heuristic justification of LosoCV by demonstrating that

it mimics the mean squared prediction error. Consider new observations Ỹ ∗i =
(
ỹ∗i1, ỹ

∗
i1, . . . , ỹ

∗
i,pi

)
.

We may write the mean squared prediction error for the new observations as follows:
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MSPE =
1

N

N∑
i=1

E
[
||Ỹ ∗i − ̂̃µi||2]

=
1

N

N∑
i=1

E
[
||Ỹ ∗i − µ̃i + µ̃i − ̂̃µi||2]

=
1

N

N∑
i=1

{
pi + E

[
||µ̃i − ̂̃µi||2]}

(3.39)

When {σ2 (t)} is known, ε̃i is a mean zero multivariate normal vector with Cov (ε̃i) = Ipi , which

gives the last equality. Since Ỹi and ̂̃µ[−i]
i are independent, the expected LosoCV score can be

written

E [Vloso (λ)] =
1

N

N∑
i=1

{
pi + E

[
||̂̃µ[−i]

i − µ̃i||2
]}

. (3.40)

When N is large, we expect that ̂̃µi should be close to ̂̃µ[−i]
i , so E [Vloso (λ)] should be a good

approximation to the mean-squared prediction error. For a formal proof of consistency, see Xu

et al. (2012).

The definition of Vloso would lead one to initially believe that calculation of the score requires

solvingN separate minimization problems. However, Xu et al. (2012) established a computational

shortcut that requires solving only one minimization problem that involves all data.

Lemma 3.2.2 (Shortcut formula for LosoCV). The LosoCV score satisfies the following identity:

Vloso (λ) =
1

N

N∑
i=1

(
Ỹi − ̂̃Yi)′ (Ipi − Ãii

)−2 (
Ỹi − ̂̃Yi) ,

where Ãii is the diagonal block of smoothing matrix Ã
λ,θ corresponding to the observations on

subject i, and Ipi is a pi × pi identity matrix.

A detailed presentation and proof can be found in Xu et al. (2012) and supplementary materials

Xu and Huang (2012). The authors additionally proposed an approximation to the LosoCV score

to further reduce the computational cost of evaluating Vloso, which can be expensive due to the
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inversion of the Ipi− Ãii. Using the Taylor expansion of
(
Ipi − Ãii

)−1

≈ Ipi + Ãii, we can use the

following to approximate Vloso:

V ∗loso (λ) =
1

N
||
(
I − Ã

λ,θ

)
Ỹ ||2 +

2

N

N∑
i=1

ˆ̃e′iÃii
ˆ̃ei, (3.41)

where ˆ̃ei is the portion of the vector of prediction errors
(
I − Ã

λ,θ

)
Ỹ corresponding to subject

i. They show that under mild conditions, and for fixed, nonrandom λ, the approximate LosoCV

score V ∗loso and the true LosoCV score Vloso are asymptotically equivalent. See Theorem 3.1 of Xu

et al. (2012).

Selection of Multiple Smoothing Parameters

With the definition of the unbiased risk estimate and the leave-one-subject-out criteria, the

expression of the smoothing matrix in (3.35) permits straightforward evaluation of both scores

U (λ,θ) and V ∗loso (λ,θ), where θ = (θ1, . . . , θq)
′ denotes the vector of smoothing parameters as-

sociated with each RK. In this section, we discuss an algorithm to minimize the unbiased risk

estimate U (λ,θ) with respect to λ and θ hidden in K =
∑

β
θβKβ, where the (i, j) entry of Kβ

is given by Kβ (vi,vj), for vi,vj ∈ V . We present minimization of the unbiased risk estimate

explicitly, but the mechanics of the optimization are very similar to those necessary for optimizing

the leave-one-subject-out cross validation criterion. The details of a procedure for explicitly mini-

mizing the alternative criterion are presented in Xu et al. (2012), which is based on the algorithms

of Gu and Wahba (1991), Kim and Gu (2004) and Wood (2004). The algorithm in Kim and Gu

(2004) is the basis for the following algorithm. The key difference between the minimization of U

and the minimization of V ∗loso lies in the calculation of the gradient and the Hessian matrix in the

Newton update. To minimize the unbiased risk estimate,

I. Fix θ; minimize U (λ|θ) with respect to λ.
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II. Update θ using the current estimate of λ.

Executing I follows immediately from the expression for the smoothing matrix. Performing the

update in II requires approximating the gradient and the Hessian of U (θ|λ) with respect to κ =

log (θ). Optimizing with respect to κ rather than on the original scale is motivated by two driving

factors. First, κ is invariant to scale transformations because the derivatives of U (·) with respect to

κ are invariant to such transformations, while the derivatives with respect to θ are not. The second

motivation for optimizing with respect to κ is that it converts a constrained optimization (θβ ≥ 0)

problem to an unconstrained one.

Algorithms

The following presents the main algorithm for minimizing U (λ,θ) and its key components are

presented in the section to follow. The minimization of U is done via two nested loops. Fixing

tuning parameter λ, the outer loop minimizes U with respect to smoothing parameters θβ via quasi-

Newton iteration of Dennis Jr and Schnabel (1996), as implemented in the nlm function in R. The

inner loop then minimizes−2`+λJ (φ) with fixed tuning parameters via Newton iteration. Fixing

the θβs in J (φ) =
∑

β
θ−1
β Jβ (φβ), the outer loop with a single λ is straightforward.
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Algorithm 1 Selection of multiple smoothing parameters for the SSANOVA model.
1: Initialization:
2: Set ∆κ := 0; κ− := κ0; U− =∞;
3: Iteration:
4: while not converged do
5: For current value κ∗ = κ−+∆κ, computeK∗θ =

∑g
β=1

θ∗βKβ, scale so that tr (Kβ) is fixed.

6: Compute Ã (λ|θ∗) = Ã (λ, exp (κ∗)).

7: Minimize U (λ|κ∗) = Ỹ ′
(
I − Ã

λ,θ

)2

Ỹ + 2 trÃ
λ,θ

8: Set U∗ := min
λ
U (λ|κ∗)

9: if U∗ > U− then
10: Set ∆κ := ∆κ/2
11: Go to 5.
12: else
13: Continue
14: end if
15: Evaluate the approximation of gradient g = (∂/∂κ)U (κ|λ)
16: Evaluate the approximation of Hessian H = (∂2/∂κ∂κ′)U (κ|λ).
17: Calculate step ∆κ:
18: if H positive definite then
19: ∆κ := −H−1g
20: else
21: ∆κ := −H̃−1g, where H̃ = diag (e) is positive definite.
22: end if
23: end while
24: Calculate optimal model:
25: if ∆κβ < −γ, for γ large then
26: Set κ∗β := −∞
27: end if
28: Compute K∗θ =

∑g
β=1

θ∗βKβ;

29: Calculate
[
d
c

]
= C̃−1

(
C̃ ′
)−1

[
B̃′

K̃∗θ
′

]
Ỹ as in (3.33)

Algorithm step (21) returns a descent direction even when H is not positive definite by adding

positive mass e to the diagonal elements of H if necessary to produce H̃ = G′G where G is upper

triangular. See Chapter 4 in Gill et al. (1981) for details. Gu and Wahba (1991) present details
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on convergence criteria based on those suggested in Gill et al. (1981). Gill et al. (1981) provide

detailed discussion of the Newton method based on the Cholesky decomposition necessary for

calculating the update direction for κ.

The unbiased risk estimate U (λ,θ) is fully parameterized by {λβ} =
{
λθ−1

β

}
, so the smooth-

ing parameters
(
λ,
{
θ−1
β

})
over-parameterize the score, which is the reason for scaling the trace

of Kβ. The starting values for the θ quasi-Newton iteration are obtained with two passes of the

fixed-θ outer loop as follows:

I. Set θ̆−1
β ∝ tr (Kβ), and minimize U (λ) with respect to λ to obtain φ̆.

II. Set θ̄−1
β ∝ Jβ

(
φ̆β

)
, and minimize U (λ) with respect to λ to obtain φ̄.

The first pass allows equal opportunity for each penalty to contribute to U , allowing for arbitrary

scaling of Jβ (φβ). The second pass grants greater allowance to terms exhibiting strength in the first

pass. The following θ iteration fixes λ and starts from θ̌β. These are the starting values adopted

by Gu and Wahba (1991); the starting values for the first pass loop are arbitrary, but are invariant

to scalings of the θβ. The starting values in II for the second pass of the outer are based on more

involved assumptions derived from the background formulation of the smoothing problem. After

the first pass, the initial fit φ̆ reveals where the structure in the true φ lies in terms of the components

of the subspacesHβ. Less penalty should be applied to terms exhibiting strong signal.

3.3 A Reproducing Kernel Hilbert Space Framework for the Innovation
Variance Function

Fixing φ in (3.2), the negative log likelihood of the data Y1, . . . , YN satisfies

−2`
(
σ2|Y1, . . . , YN , φ

)
=

N∑
i=1

pi∑
j=1

log σ2
ij +

N∑
i=1

pi∑
j=1

ε2ij
σ2
ij

; (3.42)
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where εij = yij −
∑

k<j
φ (vijk) yik. Let

RSS (t) =
∑

i,j:tij=t

(
yij −

∑
k<j

φ (vijk) yik

)2

(3.43)

denote the squared innovations for the observations yij having corresponding measurement time

t = tij. Then RSS (t) /σ2 (t) ∼ χ2
dft

, where the degrees of freedom dft corresponds to the num-

ber of observations yij having corresponding measurement time t. In this light, for fixed φ, the

penalized likelihood (3.42) is that of a variance model with the ε2ij serving as the response. This

corresponds to a generalized linear model with Gamma errors and known scale parameter equal to

2. Let zij = ε2ij, and let Zi =
(
zi1, . . . , zi,pi

)′ denote the vector of squared innovations for the ith

observed trajectory.

The Gamma distribution is parameterized by shape parameter α and scale parameter β. Let σ2

denote the mean of the distribution given by αβ. For a single observation Z, reparameterizing the

Gamma likelihood in terms of (α, σ2) and dropping terms that don’t involve σ2 (·) gives

−`
(
σ2, α|z

)
∝ α

[
log σ2 +

z

σ2

]
= α

[
η + ze−η

]
,

(3.44)

where α−1 is the dispersion parameter and η = log σ2. The log likelihood of the squared working

residuals Z1, . . . , ZN becomes

−2`
(
σ2|Z1, . . . , ZN

)
=

N∑
i=1

pi∑
j=1

ηij +
N∑
i=1

pi∑
j=1

zije
−ηij , (3.45)

where ηij = η (tij). This coincides with a Gamma distribution with scale parameter α = 2.

Smoothing spline ANOVA models for exponential families have been studied extensively; see

Wahba et al. (1995), Wang (1997), and Gu (2013). Fixing φ, we take the estimator of η (t) =

log σ2 (t) to be the minimizer of the penalized negative log likelihood:

−2` (η|Z1, . . . , ZN) + λJ (η) =
N∑
i=1

pi∑
j=1

η (tij) +
N∑
i=1

pi∑
j=1

zije
−η(tij) + λJ (η) , (3.46)
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for η ∈ H, where the penalty J can be written as a square norm and decomposed as in (3.16), with

J (η) =
∑
β

θ−1
β 〈η, η〉Hβ .

The first two terms in (3.45) serve as a measure of the goodness of fit of η to the data, and only

depend on η through the evaluation functional [tij] η. Thus, the argument justifying the form of the

minimizer in (3.19) applies to η. Let T =
⋃

i,j
{tij} denote the unique values of the observations

times pooled across subjects. The minimizer of the penalized likelihood (3.46) has the form

ηλ (t) =

N0∑
i=1

diνi (t) +

|T |∑
j=1

cjK1 (tj, t) , (3.47)

where {νi} form a basis for the null space H0 and K1 (tj, t) is the reproducing kernel for H1

evalutated at tj, the jth element of T , viewed as a function of t.

3.3.1 Model Fitting

The Gamma penalized negative log likelihood (3.47) is non-quadratic, so ηλ must be computed

using iteration even for fixed smoothing parameters. Standard theory for exponential families gives

us that the functional

L (η) =
N∑
i=1

pi∑
j=1

η (tij) +
N∑
i=1

pi∑
j=1

zije
−η(tij) (3.48)

is continuous and convex in η ∈ H. We assume that the |V | × N0 matrix B which has (i, j)

element νj (ti) is full column rank, so that L (η) is strictly convex inH and the minimizer of (3.46)

uniquely exists. See Wahba et al. (1995).

The minimizer can be computed via Newton iteration using a quadratic approximation of (3.48)

at a point η̃. Letting ũij = −zije−η̃ij , the Newton iteration uses the minimizer of the penalized

weighted sums of squares
N∑
i=1

pi∑
j=1

(z̃ij − η (tij))
2 + λJ (η) (3.49)

to update η̃, where z̃ij = η̃ (tij)− ũij.
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3.3.2 Smoothing Parameter Selection for Exponential Families

Performance-oriented is a typical choice for method of smoothing parameter selection when

data are generated from a distribution belonging to exponential families. This section provides a

brief overview of the the performance-oriented iteration, specifically for selecting the optimal de-

gree of smoothing for σ2 (t). This approach is just one of many in the inventory of model selection

techniques for penalized regression with exponential families. We refer the reader desiring de-

tailed examination to Zhang and Lin (2006), Xiang and Wahba (1996), Wahba et al. (1995), Wood

(2004), and Wood (2017).

A measure of the discrepancy between distributions belonging to an exponential family having

densities of the form p (z) = exp {(zη − b (η)) /a (φ) + c (z, φ)} is the Kullback-Leibler distance

KL (η, ηλ) = Eλ [Z (η − ηλ)− (b (η)− b (ηλ))] /a (φ)

= [b′ (η) (η − ηλ)− (b (η)− b (ηλ))] /a (φ) .
(3.50)

For the Gamma distribution, the KL distance simplifies to

KL (η, ηλ) = −σ2
(
e−η − e−ηλ

)
− (η − ηλ) ,

which is not symmetric. Thus, a natural choice of loss function for measuring the performance

of an estimator ηλ (t) of η (t) is the symmeterized Kullback-Leibler distance averaged over the

observed time points t11, . . . , tN,pN . For the Gamma distribution, this is given by

L (η, ηλ) =
1

N

N∑
i=1

[
1

pi

pi∑
j=1

(
σ2 (tij)

σ2
λ (tij)

− σ2
λ (tij)

σ2 (tij)
− 2

)]
. (3.51)

The ideal smoothing parameters are those which minimize (3.51). One can derive an unbiased risk

estimate U for the Gamma distribution as in Section 3.2.3 for the Gaussian case. Theorem 5.2 in

Gu (2013) gives that the minimizer of U , which relies only on the data, approximately minimizes

and quadratic approximation to (3.51). To find the optimal value of the smoothing parameter, the
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performance-oriented iteration tracks loss L (η, ηλ) (through U ) indirectly, simultaneously updat-

ing λ, θβ. Since it does not explicitly keep track of L (η, ηλ) itself, it may not be the most effective

way to search for the optimal smoothing parameters, but it is numerically efficient. Instead of

fixing smoothing parameters and moving according to a particular Newton update, one chooses an

update from among a family of Newton updates that is perceived to be better performing according

to L (η, ηλ). If the smoothing parameters stabilize at, say,
(
λ∗, θ∗β

)
and the corresponding Newton

iteration converges at η∗, then it is clear that η∗ = ηλ∗ is the minimizer. In a neighborhood of

η∗ where the corresponding values of the quadratic approximation of L closely approximate the

penalized likelihood functional (3.48) for smoothing parameters close to
(
λ∗, θ∗β

)
, then the ηλ,η∗s

are, in turn, hopefully close approximations to the ηλs. Thus, through indirect comparison η∗ is

perceived to be better performing among the other ηλs in the neighborhood. See Chapter 5, Section

2 of Gu (2013) for thorough discussion.

An alternative to the performance-oriented iteration is to choose the optimal smoothing param-

eters by comparing candidate ηλs directly. The generalized approximate cross validation (GACV)

score in Xiang and Wahba (1996) keeps track of L (η, ηλ), approximating the score which is anal-

ogous to the generalized cross validation score (GCV) in the usual penalized regression setting

(Wahba, 1990). We refer the reader to the aforementioned sources for extensive discussion. For

the same reason that we utilized the LosoCV criterion rather than leave-one-out or generalized

cross validation for smoothing parameter selection when estimating φ, we did not explore using

GACV for model selection for the innovation variance function.

To jointly estimate the autoregressive coefficient function and the innovation variance func-

tion, we adopt an iterative approach in the spirit of Huang et al. (2006), Huang et al. (2007), and
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Pourahmadi (2000). A procedure for minimizing

−2` (φ, η|Y1, . . . , YN) + λφJφ (φ) + ληJη (η)

starts with initializing eηij = σ2
ij = 1 for i = 1, . . . , N , j = 1, . . . , pi. For fixed η, we take φ∗ to

minimize the penalized negative log likelihood

−2` (φ|Y1, . . . , YN , η) + λφJφ (φ) .

Given φ∗ and setting φ = φ∗, we update our estimate of η by taking η∗ to minimize the penalized

negative log likelihood of the working residuals

−2` (η|Z1, . . . , ZN , φ
∗) + ληJη (η) .

This process of iteratively updating φ∗ and η∗ is repeated until convergence. Alternatively, one

could initialize the innovation variances using parsimonious approximation of the autoregressive

varying coefficient φ to calculate an initial estimate of the σ2
ij. For example, one might initialize the

innovation variances using the squared prediction errors after regressing yij on just its most recent

preceding measurement yi,j−1. Better starting values may lead to faster convergence of the overall

procedure, though we have not yet explored this concern and leave it to future investigation.
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Chapter 4: A P-spline Model for the Cholesky Decomposition

In this chapter, we demonstrate multidimensional smoothing with penalized B-splines, or P-

splines, as a flexible and computationally convenient alternative to the Hilbert space methods pre-

sented in Chapter 3. P-spline models are an extension of (generalized) linear regression models.

They exploit the attractive properties of the B-spline basis along with the use of computationally

convenient difference penalties. The formulation of the penalty is independent of the basis, which

provides added modeling flexibility due to the ease with which one can employ various types of

regularization. The B-spline functions have compact support, making them more attractive than the

smoothing spline basis when the function to be estimated exhibits compact support as well, such

as covariance matrices having banded Cholesky factor. Despite their flexibility, fitting P-spline

models are only as computationally intensive as fitting regression models.

4.1 Tensor Product B-splines for Multidimensional Smoothing

Splines are piecewise polynomial functions, where the piecewise polynomials are joined at

certain values of the domain called knots. B-splines are a basis for splines. Given a set of knots,

B-splines can be easily computed recursively for any polynomial degree; see De Boor et al. (1978)

and Dierckx (1995). The smoothness of a fitted curve can be controlled by the number of B-

splines used in the basis expansion used to approximate the curve. Fewer knots (thus, fewer basis

functions) lead to smoother fits, and there is an extensive body of research focused on the choice
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of knot placement. Some authors have proposed adaptive smoothing techniques which attempt to

automatically optimize the number and the positions of the knots; see Friedman and Silverman

(1989), Kooperberg and Stone (1991). However, this problem is nontrivial and requires nonlinear

optimization, and is still an open problem today. However, limiting the number of B-splines is not

the only approach to controlling the complexity of the fitted function.

Instead, Eilers and Marx (1996) propose alternative an approach to nonparametric smoothing

based on finite difference penalties. The difference penalties are trivial to compute and can be

done so independently of the basis, unlike the smoothing spline penalty functional (3.6). Their ap-

proach circumvents the choice of knot specification. They achieve smoothness in fitted functions

by purposefully overfitting the smooth coefficient vectors using a B-spline basis with a large num-

ber of equally spaced knots. Augmenting the log likelihood with the difference penalty prevents

overfitting and accommodates a potentially ill-conditioned fitting procedure.

Analogous to the smoothing spline representation (3.19), we can represent φ using a B-spline

basis. But first, in order to illustrate the ideas in the sections to follow, it is pragmatic to first review

some basic properties of B-splines. For an exhaustive and more formal mathematical review, see

De Boor et al. (1978) and Dierckx (1995). A B-spline is a function constructed from piecewise

polynomial functions which are connected in a very particular way. Their values can be computed

recursively; for a non-decreasing sequence of knots {ti}, the value of the ith B-spline of order k

can be defined using

Bi1 (x) =

{
1, ti ≤ x < ti+1

0, otherwise

Bik (x) =
x− ti

ti+k−1 − ti
Bi,k−1 (x) +

ti+k − x
ti+k − ti+1

Bi+1,k−1 (x) .

(4.1)
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Figure 4.1 displays a set of linear B-splines, and Figure 4.1 displays a set of B-splines of degree

2. A single isolated B-spline is shown on the left side of the axis in each panel. In Figure 4.1, the

single B-spline of degree 1 consists of two linear pieces: one piece from x3 to x4, and the other

from x4 to x5, which are the knots that define its support. In the right part of Figure 4.1, three

more B-splines of degree 1 are shown. Each one based on three knots. Comparing these with

the overlapping quadratic B-splines in Figure 4.2, we can see that the extent to which neighboring

B-splines overlap depends on the polynomial degree of the basis.
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(a)
Figure 4.1: B-splines of degree 1

(a)
Figure 4.2: B-splines of degree 2

B-splines make attractive basis functions for nonparametric regression; a linear combination of

B-spline basis functions gives a smooth curve. Once a B-spline basis is computed, their application

is no more difficult than polynomial regression, and extension to two-dimensional smoothing is
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available with the use of tensor products. To construct a B-spline representation for φ, we need to

equip the l and m axes each with a B-spline basis: let

Bl1
(l) , . . . , Blkl

(l) and Bm1
(m) , . . . , Bmkm

(m)

denote the B-spline bases for l andm, each having a set of equally spaced knots along their respec-

tive domain. It is worth noting that one is free to specify a different basis for each dimension either

by using different order B-spline or using different numbers of knots. Order of the basis will be

indicated only when necessary and otherwise suppressed to maintain simplicity of notation. The

tensor product basis functions

Tkk′ (l,m) = Blk
(l)Bm

k′
(m)

carve the l-m domain into rectangles. Figure 4.3 shows a single Tkk′ , where the marginal B-spline

bases are of degree 2. For a given knot grid, we can approximate φ by

φ (l,m) =

kl∑
r=1

km∑
c=1

θrcBlr
(l)Bmc

(m) . (4.2)
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B-splines of degree 1 B-splines of degree 2

Figure 4.3: Tensor product of two quadratic B-splines

4.2 Difference Penalties

The specification of a P-spline model provides a simple way to avoid the issue of optimal knot

selection for the l and m bases. This is done by constructing the marginal B-spline bases with

a large number of knots - more than necessary. Application of a smoothness penalty prevents

overfitting. A penalty based on discrete differences of the B-spline coefficients controls the fit in

a way much like the classical second derivative penalty (3.6) does. However, its construction is

trivial even when the number of basis functions is very large. Using the properties of B-splines,

it is straightforward to show that the difference penalty of order d approximates the integrated

square of the dth derivative well, so little is lost by using it in place of the derivative-based penalty.

O’Sullivan (1986) established that for f (x) =
k∑
j=1

θjBj (x), one can derive a banded matrix P
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using the properties of B-splines such that J (f) =
∫ 1

0
(f ′′ (x))2 can be written

J (f) = θ′Pθ

where θ = (θ1, . . . , θk) denotes the vector of B-spline basis coefficients. The (i, j) element of the

penalty matrix P is given by

pij =

∫ 1

0

B′′i (x)B′′j (x) .

Wand and Ormerod (2008) extend the work in O’Sullivan (1986) to higher order derivatives for

general degree B-splines and derive an exact matrix algebraic expression for the penalty matrices.

The computation of P is nontrivial and becomes very tedious when the third and fourth derivative

are used as the roughness measure. In the cubic case, the expression is a result of the application

of Simpson’s Rule applied to the inter-knot differences since each B′′i B
′′
j is a piecewise quadratic

function. The penalty may be written

P = (B′′)
′ diag (ω)B′′,

where B′′ is the 3 (k + 7)× (k + 4) matrix with i-jth entry given by B′′j (x∗i ), x∗i is the ith element

of (
θ1,

θ1 + θ2

2
, θ2, θ2,

θ2 + θ3

2
, θ3, . . . , θk+7,

θk+7 + θk+8

2
, θk+8

)
,

and ω is the 3 (k + 7)× 1 vector given by

ω =

(
1

6
(∆θ)

1
,
4

6
(∆θ)

1
,
1

6
(∆θ)

1
,
1

6
(∆θ)

2
,
4

6
(∆θ)

2
,

1

6
(∆θ)

2
, . . . ,

1

6
(∆θ)

n+7
,
4

6
(∆θ)

k+7
,
1

6
(∆θ)

k+7

)

where (∆θ)
j

= θj+1 − θj. They generalize this to the case of any order penalty and present a table

of formulas for constructing any arbitrary penalty matrix, P .
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Alternatively, Eilers and Marx (1996) replace the curvature penalty (3.6) with a finite difference

penalty on the B-spline coefficients. They suggest enforcing smoothness of fitted functions f (x) =
k∑
j=1

θiBj (x) using the dth order difference penalty:

Jd (f) =
k∑
j=d

(
∆dθj

)2
. (4.3)

where ∆θj = θj− θj−1, and ∆2θj = ∆ (∆θj) = θj− 2θj−1 + θj−2. In general, ∆dθj = ∆
(
∆d−1θj

)
.

Let Dd denote the differencing operator:

Ddθ = ∆dθ.

Then, (4.3) can be written in terms of the squared norm of the difference operator applied to the

vector of B-spline coefficients:

Jd (f) = ||Ddθ||2

= θ′Pdθ
(4.4)

where Pd = D′dDd. The connection between the second-derivative penalty to the penalty on

second-order differences of the B-spline coefficients can be established with straightforward calcu-

lus and the recursive property of the B-spline basis functions. The derivative properties of B-splines

permits the traditional smoothness penalty applied to f to be written∫ 1

0

(f ′′ (x))
2
dx =

∫ 1

0

[ k∑
i=1

k∑
j=1

∆2θi∆
2θjBi,1 (x)Bj,1 (x) dx

]
.

where Bj,1 (x) is the jth B-spline of order 1. Most of the cross products of Bi,1 and Bj,1 vanish

since B-splines of degree 1 only overlap when j is i− 1, i, or i+ 1. Thus, we have that∫ 1

0

(f ′′ (x))
2
dx =

∫ 1

0

[(∑
j

∆2θjBj,1 (x)

)2

+ 2
∑
j

∆2θj∆
2θj−1Bj,1Bj−1,1 (x)

]
dx

=
∑
j

(
∆2θj

)2
∫ 1

0

B2
j,1 (x) + 2

∑
j

∆2θj∆
2θj−1,1

∫ 1

0

Bj,1 (x)Bj−1,1 (x) dx.

(4.5)
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This can be written as ∫ 1

0

(f ′′ (x))
2

= c1

∑
j

(
∆2θj

)2
+ c2

∑
j

∆2θj∆
2θj−1. (4.6)

Given a set of equidistant knots, the constants c1 and c2 are given by

c1 =

∫ 1

0

(Bj,1 (x))2 dx and

c2 =

∫ 1

0

Bj,1 (x)Bj−1,1 (x) dx.

(4.7)

This establishes that traditional smoothness penalty on the squared second derivative can be written

as a linear combination of a penalty on the second-order differences of the B-spline coefficients

(4.3) and the sum of the cross products of neighboring second differences. The second term in

(4.6) leads to a complex objective function when minimizing the penalized likelihood, where seven

adjacent spline coefficients occur, as opposed to five if only the first term in (4.6) is used in the

penalty. The added complexity is a consequence of overlapping B-splines, which quickly increases

when using higher order differences and higher order B-splines.

A smoother sequence of coefficients leads to a smoother curve, as illustrated in Figure 4.4. The

relationship between P-spline curves and their coefficients is easily characterized if we consider the

coefficients as the skeleton of the function, and draping the B-splines over them puts the flesh on

the bones, so to speak. As long as the coefficient sequence is smooth, the number of basis functions

(and coefficients) is unimportant since the penalty ensures the smoothness of the skeleton and that

the fitting procedure is well-conditioned.
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(a) (b)

(c) (d)

Figure 4.4: Illustration of the impact of the second order difference penalty. The number of B-splines used
is the same in each plot, with the value of the penalty parameter increasing from left to right and top to
bottom across each plot. The red circles are the values of each of the B-spline coefficients; as the penalty
increases, they form as smoother sequence as we move across the four plots, which results in a smoother
fitted function. As the penalty parameter approaches infinity, the fit approaches a linear function as shown
in the bottom right plot.
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The limiting P-spline fit approaches a polynomial as the smoothing parameter tends to infinity.

Under a difference penalty of order d, the fitted function will approach a polynomial of degree

(d− 1) for large values of the smoothing parameter as long as the degree of the B-splines is

greater than or equal to k. Figure 4.5 demonstrates the impact of the order of the penalty on the

fitted function as the smoothing parameter increases. To verify this mathematically, we need to

use the relationship between the differenced coefficient sequence and the derivative of a B-spline.

See Appendix B. Consider using the second-order difference penalty. When λ is large, the penalty

dominates the penalized likelihood, so that the minimizer θ must be such that
∑
j

(∆2θj)
2 is close

to zero. Consequently, each of the individual second differences must also be nearly zero, and thus

the second derivative of the fitted function must be close to zero over the entire domain.
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(a) d = 0 (b) d = 1

(c) d = 2 (d) d = 3

Figure 4.5: Illustration of the impact of the order of the difference penalty. The number of B-splines used
is the same in each plot, with the penalty parameter varying from across the same grid of values. The
fitted curves in the upper left plot correspond to the difference penalty of order 0, where |D0θ|2 =

∑
i
θ2
i ,

analogous to ridge regression using the B-spline basis as regression covariates. The fitted curves approach
polynomials of degree d− 1 as λ→∞.
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4.3 The P-spline Estimator of the Generalized Autoregressive Varying Co-
efficient

To extend the use of the difference penalty (4.3) to the bivariate setting, the only necessary

modification to the one-dimensional differencing procedure is the addition of a second difference

penalty so that there is a penalty for each variable, l and m. Let Θ denote the kl × km matrix of

basis coefficients {θrc}. For given Θ, the fitted value φ (l,m) may be written

kl∑
r=1

km∑
c=1

θrcBlr
(l)Bmc

(m) .

Let λ = (λl, λm) denote the tuple of smoothing parameters for the l and m dimensions, respec-

tively. We take φλ to be the minimizer of

− 2`
(
φ|Y1, . . . , YN , σ

2
)

+ Jλ (φ) =
N∑
i=1

pi∑
j=2

1

σ2 (tij)

(
yij −

j−1∑
k=1

(
kl∑
r=1

km∑
c=1

θrcBr (lijk)Bc (mijk)

)
yik

)2

+ λl

kl∑
r=1

||θr·Ddl
||2 + λm

km∑
c=1

||Ddmθ·c||2,

(4.8)

where θr· and θ·c denote the rth row and cth column of Θ, respectively. The second term in (4.8)

imposes a difference penalty of order dl on the rows of the coefficient matrix, while the third term

places a difference penalty of order dm on the columns.

The penalized log likelihood is quadratic in θ =
(
θ11, . . . , θkl,km

)′. Demonstration of compu-

tation is simple if we express the coefficient matrix Θ in “unfolded” notation so that we can write

the mean of the stacked response vector Y as defined in (3.20) as in the usual multiple regression

form

E [Y ] = Xvec {φ (v)} = XBθ,

where θ = vec (Θ) denotes the vectorized coefficient matrix constructed by stacking the columns

of Θ. The |V |×klkm tensor product basis B is constructed from the tensor product of the marginal
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B-spline bases defined in Eilers et al. (2006) as the row-wise Kronecker product of the individual

bases:

B = Bm�Bl =
(
Bm ⊗ 1′km

)
�
(

1′kl ⊗Bl

)
. (4.9)

The operator � denotes the element-wise matrix product; 1kl (1km) denotes the column vector of

ones having length kl (km.) The operations in (4.9) construct B such that the ith row of Bm�Bl

is the Kronecker product of the corresponding rows of Bm and Bl. We can compactly express the

penalty in (4.8) by writing

λl||Plθ||2 + λm||Pmθ||2

where Pl = Ikm ⊗D′dlDdl
and Pm = D′dmDdm ⊗ Ikl . The nY × klkm matrix X is defined as before

(3.22). Then the log likelihood (4.8) can be written as

−2` (φ|Y1, . . . , YN) + Jλ (φ) = (Y −XBθ)′D−1 (Y −XBθ) + λl||Plθ||2 + λm||Pmθ||2. (4.10)

Taking derivatives and setting equal to zero gives normal equations:

[
(XB)′D−1XB + λlPl + λmPm

]
θ = (XB)′D−1Y. (4.11)

The solution φλ is given by φλ (v) =
∑kl

r=1

∑km
c=1
θ̂rcBlr

(l)Bmc
(m), where

θ̂ =
[
(XB)′D−1XB + λlPl + λmPm

]−1
(XB)′D−1Y. (4.12)

We note that the size of the system of equations (4.11) which determine the basis coefficients

remains fixed at klkm, even as the number of observations increases. The grid of regression coeffi-

cients can be recovered by arranging the elements of θ̂ into a matrix of kl columns having length

km. The vector of fitted values is given by

Ŷ = AY = X
[
(XB)′D−1XB + λlPl + λmPm

]−1
(XB)′D−1Y, (4.13)
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whereA = X
[
(XB)′D−1XB + λlPl + λmPm

]
(XB)′D−1 is the “smoothing” matrix, analogous

to the smoothing matrix Ã (3.35) for the smoothing spline estimator in Chapter 3. Its use in

smoothing parameter selection and model tuning is similar to the reproducing kernel Hilbert space

framework, which we will discuss in the next section.

It is important to note that the construction of the tensor product basis B and penalty matrix

P requires special care in this setting, where the domain of φ (l,m) is restricted to the region

satisfying 0 ≤ s < t ≤ 1, which is shown in Figure 4.6.

Figure 4.6: l
2 < m < 1− l

2 , 0 < l < 1.
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When the tensor product basis is constructed on the regular grid defined by the cartesian product

of the knots of the marginal bases Bl and Bm, a large number of basis functions anchored are

at knots near which we have no data, so there is little information about the corresponding basis

coefficient. As a result, the resulting tensor product matrix can be ill-conditioned and solving (4.11)

results in singularities. In this case, the quality of the estimator can suffer terribly. To correct for

this instability, one can simply remove the knots corresponding to tensor products functions which

do not overlap with the function domain from the basis, B, and trimming the penalty matrices

Pl and Pm as needed. With the trimmed basis and penalties, optimization can be carried out as

previously discussed.

Bivariate B-splines are useful for smoothing over arbitrary domains, making them a natural

alternative for the construction of a basis for v = (l,m). Multidimensional B-splines are well-

developed by mathematicians, but they are rarely used in the statistical community. To smooth

over non-rectangular domains, the domain is approximated by a set of triangles, or a triangulation,

where each triangle is defined by its three vertices. The B-splines are defined according to a set of

triples which correspond to set of knots over the bivariate domain. See Dahmen et al. (1992) and

Seidel (1991) for details.

4.4 Smoothing Parameter Selection

As with the RKHS framework and accompanying smoothing spline representation, the smooth-

ing matrix

Aλ = X
(

(XB)′D−1XB + λlPl + λmPm
)−1

(XB)′D−1

and its properties play an integral role in selecting the optimal smoothing parameter in any regular-

ized regression, including the P-spline framework. We discussed the leave-one-subject-out cross

validation score (3.38) and its computationally efficient approximation (3.41) in Chapter 3, which
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rely directly on the smoothing matrix for calculation. The model selection criteria discussed in

Section 3.2.3 can be calculated as in the smoothing spline setting by replacing Ã
λ,θ with Aλ. For

detailed discussion of P-spline model selection with respect to multiple smoothing parameters, see

Wood (2017).

4.5 The P-spline Estimator for the Innovation Variance Function

The P-spline estimator for the log innovation variance function is constructed via penalized

similarly to the smoothing spline estimator in Section 3.3. Fixing φ = φ∗ at an estimate φ∗ of φ,

the the log likelihood of the squared working residuals can be written as in (3.42)

−2`
(
σ2|Z1, . . . , ZN , φ,

)
=

N∑
i=1

pi∑
j=1

log σ2
ij +

N∑
i=1

pi∑
j=1

zij
σ2
ij

,

where εij = yij −
∑
k<j

φ∗ijkyik, and zij = ε2ij. We can approximate η (t) = log σ2 (t) using a B-spline

basis expansion, letting

η (t) =
kt∑
j=1

θjBj (t) .

Model estimation and smoothing parameter selection can be carried out using performance-oriented

iteration as described in Section 3.3.2, substituting the above expansion for η and trading the

smoothing spline penalty for the discrete difference penalty (4.3). For detailed presentation of

optimization procedures, see Marx and Eilers (1999).
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Chapter 5: Simulation Studies

In this section we compare bivariate spline estimators of the Cholesky factor to other methods

of covariance estimation. Our primary comparisons are that with the parametric polynomial esti-

mator proposed by Pourahmadi (1999), Pan and Mackenzie (2003), and Pourahmadi and Daniels

(2002), which is also based on the modified Cholesky decomposition, and with the oracle esti-

mator, which effectively gives a lower bound on the risk for given covariance structure. As a

benchmark, we also include the sample covariance matrix, and two regularized variants of it: the

tapered sample covariance matrix (Cai et al., 2010) and the soft thresholding estimator (Rothman

et al., 2009), which do not rely on a natural ordering among the variables. In the simulations,

the smoothing spline estimator of the modified Cholesky decomposition was constructed using the

framework of a tensor product cubic smoothing spline. For each covariance matrix used for simu-

lation, the P-spline estimator was constructed so that the order of the difference penalties for l and

m are treated as additional tuning parameters.

Simulations were carried out for five covariance structures: the diagonal covariance with ho-

mogenous variances, a heterogenous autoregressive process with linear varying coefficient func-

tion, the same heterogeneous process but truncated to zero to band the inverse covariance ma-

trix, the rational quadratic covariance model, and the compound symmetric model. The two-

dimensional surfaces corresponding to each of these are shown left to right in Figure 5.1. The first

row of image plots display the surface which coincides with the appropriate discrete covariance
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matrix, and in the second row are the surface maps of the corresponding Cholesky factors. Precise

models used for simulations are defined in Table 5.1.

Table 5.1: Covariance models used for data generation in the simulation study.

I: Mutual independence

Σ = I
φ̃ (t, s) = 0, 0 ≤ s < t ≤ 1,

σ2 (t) = 1, 0 ≤ t ≤ 1.

II: Linear varying coefficient function, constant innovation variances

Σ = T−1DT ′−1
φ̃ (t, s) = t− 1

2
, 0 ≤ t ≤ 1,

σ2 (t) = 0.12, 0 ≤ t ≤ 1.

III: Banded linear varying coefficient function, constant innovation variances

Σ = T−1DT ′−1
φ̃ (t, s) =

{
t− 1

2
, t− s ≤ 0.5

0, t− s > 0.5
,

σ2 (t) = 0.12, 0 ≤ t ≤ 1.

IV: Rational quadratic covariance

Σ = [σij]
σij =

(
1 +

(ti−tj)2

2αk2

)−α
, 0 < ti, tj < 1

k = 0.6, α = 1

V: Compound symmetry

Σ = σ2 (ρJ + (1− ρ) I) ,

ρ = 0.7, σ2 = 1

φ̃ (t, s) =
ρ

1 + (t− 2) ρ
,
t = 2, . . . , p,
s = 1, . . . , t− 1

σ2 (t) =

{
1, t = 1

1− (t−2)ρ2

1+(t−2)ρ
, t = 2, . . . , p
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The smallest elements of each matrix correspond to dark green pixels, while the light pink

(white) pixels correspond to the large (largest) elements of the matrix. Comparison of the co-

variance matrices with the generalized autoregressive coefficient function which defines lower

triangular surface in the second row demonstrates that covariance structures exhibiting sparsity

or parsimony do not necessarily exhibit the same simplicity in the components of the Cholesky

decomposition. The Cholesky factor for Model III, the truncated linear varying coefficient AR

model, is sparse, with elements on the outer half of the subdiagonals equal to zero. While this cor-

responds to a banded inverse covariance structure, Σ itself is not sparse. The compound symmetric

model has simple structure and is parsimonious; its dependence parameters can be expressed as the

evaluation of a function which is constant in time t. However, the elements of the Cholesky factor

and diagonal matrix of innovation variances D = TΣT ′ do not exhibit such elementary structure,

the elements of which are nonlinear in t.
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Figure 5.1: Heatmaps of the true covariance matrices (row 1) under simulation Model I - Model V (see
Table 5.1) and the function φ defining the corresponding Cholesky factor T (row 2).

5.1 Loss Functions and Risk Measures

Let Σ̂ be an estimator of the true p × p covariance matrix Σ. To assess performance of an

estimator Σ̂, we consider two commonly loss functions:

∆1

(
Σ, Σ̂

)
= tr

((
Σ−1Σ̂− I

)2
)
, (5.1)

∆2

(
Σ, Σ̂

)
= tr

(
Σ−1Σ̂

)
− log|Σ−1Σ̂| − p. (5.2)

Each of these loss functions is 0 when Σ̂ = Σ and is positive when Σ̂ 6= Σ. Both measures of loss

are scale invariant. If we let random vector Y have covariance matrix Σ, and define the Z as some
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linear transformation of Y :

Z = CY.

for some p × p matrix C, then Z has covariance matrix ΣZ = CΣC ′. Given an estimator Σ̂ of

Σ, one immediately obtains an estimator for ΣZ , Σ̂Z = CΣ̂C ′. If C is invertible, then the loss

functions ∆1 and ∆2 satisfy

∆i

(
Σ, Σ̂

)
= ∆i

(
CΣC ′, CΣ̂C ′

)
.

The first loss ∆1, or the quadratic loss, measures the discrepancy between
(

Σ−1Σ̂
)

and the identity

matrix with the squared Frobenius norm. The Frobenius norm of a matrix A is given by

||A||2F = tr (AA′) .

The second loss ∆2 is commonly referred to as the entropy loss; it gives the Kullback-Leibler

divergence of two multivariate Normal densities with the same mean and the two corresponding

covariance matrices. The quadratic loss penalizes overestimates more than underestimates, so

“smaller” estimates are favored more under ∆1 than ∆2. For example, among the class of estima-

tors comprised of scalar multiples cS of the sample covariance matrix, Haff (1980) established that

S is optimal under ∆2, while the smaller estimator N
N+p+1

S is optimal under ∆1.

Given Σ, the corresponding values of the risk functions are obtained by taking expectations:

Ri

(
Σ, Σ̂

)
= EΣ

[
∆i

(
Σ, Σ̂

)]
, i = 1, 2.

We prefer an estimator Σ̂ with smaller risk. Given Σ, we can estimate the risk of an estimator via

Monte Carlo approximation.

5.2 Alternative Estimators

The following estimators serve as benchmarks for performance under the five simulation set-

tings outlined above: the MCD polynomial estimator Σ̂poly, the sample covariance matrix S, the
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soft thresholding estimator Sλ, and the tapering estimator Sω. We will review the general defini-

tions of these, but for detailed discussion of the construction and properties of these estimators, see

Sections 2.2 and 2.3.

In the spirit of the GLM, the MCD polynomial estimator is a particular case of estimators which

model the components of the Cholesky decomposition using covariates. The polynomial estimator

takes the GARPs and IVs to be polynomials of lag and time, respectively:

φjk = x′jkβ

log σ2
j = z′jγ,

for j = 2, . . . , p, k = 1, . . . , j − 1. The vectors zj and xjk are of dimension q × 1 and d× 1 which

hold covariates

x′jk =
(

1, tj − tk, (tj − tk)2 , . . . , (tj − tk)d−1
)′
,

z′j =
(
1, tj, . . . , t

q−1
j

)′
,

(5.3)

where the orders of the polynomials, d and q, are chosen by BIC.

Rothman et al. (2009) presented a class of generalized thresholding estimators, including the

soft-thresholding estimator given by

Sλ =
[
sign (sij) (sij − λ)

+

]
,

where sij denotes the i-jth entry of the sample covariance matrix, and λ is a penalty parameter

controlling the amount of shrinkage applied to the empirical estimator.

The tapering estimator proposed by Cai et al. (2010) is given by

Sω =
[
ωkijsij

]
,

where the ωkij are given by

ωkij = k−1
h

[
(k − |i− j|)

+
− (kh − |i− j|)+

]
.
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The weights ωkij are controlled by a tuning parameter, k, which can take integer values between 0

and p. Without loss of generality, we assume that kh = k/2 is even. The weights may be rewritten

as

ωij =


1, |i− j| ≤ kh
2− i−j

kh
, kh < |i− j| ≤ k,

0, otherwise.

Tuning parameter selection for the regularized versions of the sample covariance matrix was

performed using cross validation. Under certain conditions pertaining to the ratio of sample sizes

of the training and validation datasets, theK-fold cross validation criterion is a consistent estimator

of the Frobenius norm risk. It is defined

CVF (λ) = arg min
λ

K−1

K∑
k=1

||Σ̂(−k) − Σ̃(k)||2F . (5.4)

There is little established about the optimal method for tuning parameter selection for the class

of estimators based on elementwise shrinkage of the sample covariance matrix. However, based

on the results of an extensive simulation study presented in Fang et al. (2016), we use 10-fold

cross validation to select the tuning parameters for both the tapering estimator Sω and the soft

thresholding estimator Sλ. The authors implement cross validation for a number of element-wise

shrinkage estimators for covariance matrices in the Wang (2014) R package, which was used to

calculate the risk estimates for Sω and Sλ.

As discussed in Chapter 2, in the limit, soft thresholding produces a positive definite estimator

with probability tending to 1 (Rothman et al., 2009), however element-wise shrinkage estimators of

the covariance matrix, including the soft thresholding estimator, are not guaranteed to be positive

definite. We observed simulations runs which yielded a soft thresholding estimator that was indeed

not positive definite. In this case, the estimate has at least one eigenvalue less than or equal to

zero, and the evaluation of the entropy loss (5.2) is undefined. To enable the evaluation of the
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entropy loss, we coerced these estimates to the “nearest” positive definite estimate via application

of the technique presented in Cheng and Higham (1998). For a symmetric matrix A, which is not

positive definite, a modified Cholesky algorithm produces a symmetric perturbation matrix E such

that A+ E is positive definite.

Pan and Mackenzie (2003) present an iterative procedure for estimating coefficient vectors β, γ

of the polynomial model (5.2). Their algorithm uses a quasi-Newton step for computing the MLE

under the multivariate normal likelihood. Their work is implemented in the JMCM package for R,

which we used to compute the polynomial MCD estimates. For implementation details, see Pan

and Pan (2017).

In addition to these estimators, we include risk estimates for the oracle estimator for each of

the simulation models in Table 5.1, which serves as a practical lower bound for the risk under

each generating model. For the case of mutual independence with constant variance, the oracle

estimator of the covariance matrix is a diagonal matrix with the diagonal elements given by σ̂2,

which is an estimate of the variance based on all of the data, yij, i = 1, . . . , N , j = 1, . . . , pi. The

oracle estimator for Model II is obtained by fitting the model

y (tij) =
∑
k<j

(β0 + β1tik) y (tik) + ε (tij) , (5.5)

where ε (tij) are independent mean zero Normal random variables with common variance σ2. The

estimator of β = (β0, β1)
′, β̂ is taken to be

arg min
β

||Y −XBβ||2, (5.6)
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where X denotes the matrix of autoregressive covariates as defined in (3.22) and Example 1, and

the matrix B contains the basis for a linear function of t:

1 t11

1 t12

...
...

1 t1,p1
...

...
1 tN,1
...

...
1 tN,pN


.

The estimator for σ2 is then the mean of the squared residuals:

σ̂2 =
1

N

[
N∑
i=1

1

(pi − 1)

pi∑
j=1

e2
ij

]
,

where ei1 = yi1, i = 1, . . . , N . The oracle estimator for Model III is obtained in the same fashion,

but y (tij) is regressed only on its predecessors such that tij − tik < 0.5:

y (tij) =
∑

tij−tik<0.5

(β0 + β1tik) y (tik) + ε (tij) . (5.7)

The oracle estimator under Model IV, the rational quadratic covariance model, assumes that

Y1, . . . , YN is a random sample from a mean zero multivariate normal distribution with covari-

ance matrix Σ =
[
σij
]
, where the elements of the covariance matrix are defined according to the

parametric function given in Table 5.1.

The compound symmetric covariance Model V can be written as a simple random effects

model:

Yi = Zibi + εi, (5.8)

where εi is a vector of residuals from aN (0, σ2
ε ) distribution, and the bi are independentN (0, σ2

b I)

random vectors, the elements of which are mutually independent of the elements of εi. The matrix
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of covariates corresponding to the random effects contains only an intercept term:

Zi =


1
1
...
1

 .
Under this model, the within-subject covariance structure is given by

Cov (Yi) = σ2
ε I + σ2

b 11′.

The oracle estimator can be obtained using restricted maximum likelihood estimation under a

Normal likelihood with this covariance structure.

5.3 Data Generation Procedures

For each of the covariance models, we generated a set of observations of sample size N =

50, 100 from a multivariate normal distribution for each of three different values of within-subject

sample size p = 10, 20, 30. To generate data according to Models II and III, which are parameter-

ized in terms of the components of the Cholesky decomposition, the Cholesky factor T and diag-

onal innovation variance matrix D are constructed by evaluating φ̃ and σ2 at the fixed observation

times. The data are then sampled according to the multivariate normal distribution with covariance

matrix Σ = T−1DT ′−1. Given covariance matrix Σ, risk estimates are obtained fromNsim = 100

samples from an p-dimensional multivariate Normal distribution with mean zero and the same

covariance. Since construction of the sample covariance matrix S, Sω, and Sλ rely on having

an equal number of regularly-spaced observations on each subject, simulations comparing perfor-

mance across estimators were conducted using complete data with common measurement times

across all N subjects. The observation times, which are equally spaced, are mapped from the

integers 1, 2, . . . , p to the unit interval for estimation.
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Our second concern in evaluation of our methods is how performance changes when the data

exhibit varying degrees of sparsity. We fix the number of sampled trajectories N and vary p, the

size of the set of possible measurement times

t1, . . . , tp.

We generate irregular data by first generating a complete dataset as we did for the first simulation

study:

Y1 = (y1 (t1) , y1 (t2) , . . . , y1 (tp))
′

Y2 = (y2 (t1) , y2 (t2) , . . . , y2 (tp))
′

...

YN = (yN (t1) , yN (t2) , . . . , yN (tp))
′ ,

where Y1, . . . , YN are independently and identically distributed according to an p-dimensional mul-

tivariate Normal distribution with mean zero and having covariance structure identical to one of

Models I - V in Table 5.1. To induce sparsity, we subsample from the complete data {yi (tj)},

i = 1, . . . , N , j = 1, . . . , p, randomly omitting an observation yi (tj) with probability 0.1, 0.2,

and 0.3. For both sets of simulations, the smoothing parameters for the smoothing spline and P-

spline estimators were selected using both leave-one-subject-out cross validation losoCV (λ) and

unbiased risk estimate U (λ). Given the selected values of the tuning parameters, we computed

the estimated covariance matrix and compared it to the true covariance matrix via entropy loss and

quadratic loss.
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5.4 Results

5.4.1 Simulations with Complete Data

Figure 5.2 provides a visual summary of the qualitative differences between the estimates re-

sulting from each of the eight methods of estimation for the five covariance structures used for

simulation. The first row in the grid shows the surface plot of each of the true covariance struc-

tures, and each row thereafter corresponds to the five covariance estimates for the given estimation

method. The surface plots of the oracle estimate in the second row serve as a point of reference

for the ‘gold standard‘ in each scenario, since the oracle estimates were constructed assuming that

the functional form of the covariance is known (either the full covariance structure or the compo-

nents of the Cholesky decomposition). The corresponding estimates of the Cholesky factor T for

the estimators based on the modified Cholesky decomposition are shown in Figure 5.3, and the de-

composition of the T̂ corresponding to the smoothing spline ANOVA estimator Σ̂SS into functional

components is displayed in Figure 5.4
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Figure 5.2: Covariance Model I - Model V (see Table 5.1) used for simulation and corresponding estimates.
The columns in the grid correspond to each simulation model. The first row shows the true covariance
structure, and each row beneath corresponds to each of the estimators.
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Figure 5.3: The generalized autoregressive coefficient function φ which defines the elements of the true
lower triangle of Cholesky factor T corresponding to Model I - Model V and estimates of the same surface
for estimators based on the modified Cholesky decomposition. The true covariance structure is displayed
across the top row.
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Figure 5.4: Estimated functional components of the smoothing spline ANOVA decomposition φ = φ1 +φ2 +
φ12 for Σ̂SS under each simulation Model I - V.

The results of the simulations for complete data under entropy loss are presented in Tables 5.2 -

5.6, where the smoothing parameters for our smoothing spline estimator Σ̂SS and P-spline estimator

Σ̂PS are chosen using the unbiased risk estimate. Performance of the estimator when the smoothing
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parameter is chosen using leave-one-subject-out cross validation is comparable; these results are

left to Appendix C. Risk estimates under quadratic loss, while there is not agreement between

results every time, qualitatively, they are similar in nature to those with entropy loss and are also

presented in Appendix C, Tables C.1-C.5. Since both loss functions are not standardized, they

cannot be compared across dimensions p.
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Figure 5.5: The distribution of the square root of entropy loss ∆2 under Model I for each of the estimators
considered in the simulations with complete data. The top figure displays results under each of the three
data dimensions p = 10, 20, 30 and sample sizes N = 50, 100. The relative performance of each estimator
compared to the others is consistent across dimensions. The bottom figure shows a more detailed view for
comparison between the oracle estimator and the estimators based on the modified Cholesky decomposition.
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Figure 5.6: The distribution of the square root of entropy loss ∆2 under Model III for the smoothing spline
estimator Σ̂SS for 100 simulated multivariate normal samples of size N = 50 (hollow boxplots) and N =
100 (filled boxplots) with dimension p = 20. The estimator Σpoly based on the parametric model for
the modified Cholesky decomposition suffers from model misspecification, which is clearly reflected in its
performance as measured by ∆2.
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Figure 5.7: The distribution of the square root of entropy loss ∆2 under Model III for the smoothing spline
estimator Σ̂SS for 100 simulated multivariate normal samples of size N = 50 (hollow boxplots) and N =
100 (filled boxplots) with dimension p = 20. The loss distributions are shown for the sample covariance
matrix as well as the tapered sample covariance matrix. While the underlying inverse covariance matrix is
banded, the covariance matrix itself is not, which explains why S outperforms its regularized variant Sω.
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Figure 5.8: The distribution of the square root of entropy loss ∆2 under Model IV for the smoothing spline
estimator Σ̂SS for 100 simulated multivariate normal samples of size N = 50 (hollow boxplots) and N =
100 (filled boxplots) with dimension p = 20. The performance of the estimator Σpoly based on the parametric
model for the modified Cholesky decomposition is more comparable to that of our estimators when the
underlying covariance matrix is stationary.
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Figure 5.9: The distribution of the square root of entropy loss ∆2 under Model V for the smoothing spline
estimator Σ̂SS for 100 simulated multivariate normal samples of size N = 50 (hollow boxplots) and N =
100 (filled boxplots) with dimension p = 20. The parsimony of the compound symmetric model, having
only two parameters to be estimated, lends to the marked improvement of the performance of the sample
covariance when the sample size is increased from N = 50 to 100.

In general, our estimators outperform the alternative estimators across the five covariance struc-

tures. This not surprising; the soft thresholding estimator assumes no ordering of the variables of

the random vector, which all but one of the generating structures exhibit. The tapering estimator

assumes that the absolute value of the covariance decays as l increases; only Model IV satisfies

this. The parametric estimator based on the modified Cholesky decomposition assumes that φ can

100



be modeled as a univariate function of l, which does not hold for any of the models, save Model

IV.

The smoothing spline estimator outperforms the P-spline estimator in cases where the underly-

ing covariance structure cannot be modeled as a multiplicative function of l andm - namely, Model

II. It also does a better job estimating the diagonal structure of Model I. The optimal difference

penalty order for the P-spline under the identity covariance matrix is d = 0, which corresponds

to a ridge penalty on the B-spline coefficients which could lead to a fitted surface which is not

necessarily smooth.

Treating the differencing order as an additional tuning parameter is advantageous since search-

ing for the optimal set of smoothing parameters is much easier when the true function belongs to

the null space of the penalty. The P-spline estimator outperforms the smoothing spline estimator

under Models IV and V, likely due to this advantage. While the surface of the Cholesky factor of

Model IV is smooth, value of the function changes very quickly in distance from the diagonal. The

local support of the B-spline basis functions aids in the P-spline estimator’s ability to accommo-

date such fast oscillations in surface. The same can be said for Model III, which is not smooth in

l = t− s.
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Table 5.2: Multivariate normal simulations for Model I. Estimated entropy risk is reported for
the oracle estimator for each covariance structure, our smoothing spline ANOVA estimator and
P-spline estimator, the parametric polynomial estimator of Pan and MacKenzie (2003), the sample
covariance matrix, the tapered sample covariance matrix, and the soft thresholding estimator.

p Σ̂oracle Σ̂SS Σ̂PS Σ̂poly S Sω Sλ

N = 50 10 0.0135 0.0685 0.1261 0.1102 1.2047 0.5369 1.1742
20 0.0229 0.0834 0.1713 0.1096 4.9850 1.3957 4.7796
30 0.0196 0.1102 0.1969 0.1127 12.5517 2.8019 11.3175

N = 100 10 0.0105 0.0451 0.0671 0.0531 0.5685 0.2045 0.5236
20 0.0105 0.0425 0.0965 0.0512 2.2831 0.5724 2.1358
30 0.0139 0.0431 0.1148 0.0472 5.2770 1.2430 4.9126

Table 5.3: Multivariate normal simulations for Model II.

p Σ̂oracle Σ̂SS Σ̂PS Σ̂poly S Sω Sλ

N = 50 10 0.0581 0.0689 0.3423 4.7673 1.2832 1.4644 1.1770
20 0.0439 0.0581 1.3640 97.2334 5.1665 21.6407 39.3522
30 0.0627 0.0811 2.6485 153.9665 12.3582 55.3674 133.9980

N = 100 10 0.0386 0.0457 0.2945 4.7911 0.5812 0.8335 0.5628
20 0.0269 0.0416 1.2875 98.1989 2.3364 10.1841 10.0864
30 0.0288 0.0367 2.4365 158.2480 5.2389 33.5207 62.5030

Table 5.4: Multivariate normal simulations for Model III.

p Σ̂oracle Σ̂SS Σ̂PS Σ̂poly S Sω Sλ

N = 50 10 0.0619 0.3296 0.1065 3.0108 1.2030 1.1460 1.1467
20 0.0695 1.1100 0.2555 62.7522 4.9824 17.2244 14.9189
30 0.0576 2.3215 0.6242 1091.1933 12.4792 49.9135 121.7795

N = 100 10 0.0268 0.2904 0.0579 3.0383 0.5699 0.5545 0.5371
20 0.0275 1.1963 0.2011 62.8960 2.2700 11.8274 9.5217
30 0.0221 2.2811 0.3845 1105.0449 5.2234 29.1693 60.3529
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Table 5.5: Multivariate normal simulations for Model IV.

p Σ̂oracle Σ̂SS Σ̂PS Σ̂poly S Sω Sλ

N = 50 10 0.0217 0.3348 0.1966 0.7144 1.2218 0.7397 1.1921
20 0.0286 0.9177 0.3499 1.4588 4.9091 1.9786 4.9206
30 0.0283 1.5992 0.5100 2.2173 12.6114 3.7440 12.1489

N = 100 10 0.0125 0.3047 0.2237 0.6958 0.5570 0.3168 0.5515
20 0.0105 0.8911 0.3704 1.4813 2.2659 0.9365 2.2474
30 0.0134 1.5213 0.5282 2.2228 5.2106 1.9312 5.2111

Table 5.6: Multivariate normal simulations for Model V.

p Σ̂oracle Σ̂SS Σ̂PS Σ̂poly S Sω Sλ

N = 50 10 0.0986 0.2769 0.2464 1.2420 1.2023 18.5222 2.9824
20 0.2512 0.7514 0.8772 2.8557 5.0195 34.6618 13.8690
30 0.2641 1.1776 0.9791 4.5791 12.3460 46.5437 26.1364

N = 100 10 0.0520 0.2416 0.1722 1.1491 0.5821 16.4081 1.7397
20 0.0827 0.7286 0.2965 2.9080 2.2918 32.5295 5.4649
30 0.1799 1.1813 0.4291 4.4402 5.2197 39.2914 15.4295

5.4.2 Performance with Irregularly Sampled Data

Figure 5.10 displays the distribution of entropy loss for our smoothing spline estimator when

the smoothing parameters are selected using the unbiased risk estimator. Tables 5.7 - 5.11 provide

summaries of these distributions as well as those for the estimator when leave-one-subject-out cross

validation is used for smoothing parameter selection. Results under quadratic loss are similar to

those under entropy loss and are left to Appendix C, Tables C.6 - C.10. Neither model selection

perform better than the other across all of the simulation settings. This might suggest that when the

estimated innovation variances are close to the true variances of the prediction residuals, using the

unbiased risk estimate with the working residuals as substitute for the relative error is a reasonable
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approach to modeling. Performance degradation of the estimator in the presence of missing data

is highly dependent on the underlying structure of the Cholesky factor of the inverse covariance

matrix. For Models I and IV, the identity matrix and the rational quadratic covariance model, per-

formance remains fairly stable as the proportion of missing data increases. The estimator exhibits

similar degrees of performance degradation under Models II, III, and V. Interestingly, these models

(with the exception of Model III, which is a special case) have true varying coefficient functions

which are naturally parameterized as functions of t, while the models under which the performance

remain stable across increasing proportions of missing data are naturally parameterized in terms of

l.

p = 20

p = 10

Figure 5.10: The distribution of entropy loss for the smoothing spline estimator Σ̂SS for 100 simulated
multivariate normal samples of sizeN = 50 when 0%, 10%, 20%, and 30% of the data are missing for each
subject for dimension p = 10 (top) and p = 20 (bottom).
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Table 5.7: Model I: Entropy risk estimates and corresponding standard errors for the MCD
smoothing spline ANOVA estimator via 100 simulated multivariate normal samples of sizeN = 50
when 0%, 10%, 20%, and 30% of the data are missing for each subject. Risk is reported for the
estimator constructed using the unbiased risk estimate and leave-one-subject-out cross validation
for smoothing parameter selection.

p % missing ∆2(Σ̂
U
SS) ∆2(Σ̂

V ∗
SS )

10 0.0 0.06854186 (0.0065) 0.0822183 (0.0075)
0.1 0.08895763 (0.0080) 0.0997540 (0.0083)
0.2 0.08474403 (0.0069) 0.1257789 (0.0110)
0.3 0.14281452 (0.0114) 0.1552415 (0.0142)

20 0.0 0.08337738 (0.0056) 0.0924326 (0.0167)
0.1 0.10467926 (0.0072) 0.3019903 (0.1922)
0.2 0.13920223 (0.0076) 0.2099852 (0.0308)
0.3 0.17160295 (0.0088) 0.3784635 (0.1054)

Table 5.8: Model II: Entropy risk estimates and corresponding standard errors.

p % missing ∆2(Σ̂
U
SS) ∆2(Σ̂

V ∗
SS )

10 0.0 0.0689091 (0.0057) 0.0863937 (0.0070)
0.1 0.0961388 (0.0066) 0.1396364 (0.0119)
0.2 0.2089429 (0.0140) 0.1988000 (0.0173)
0.3 0.2947206 (0.0212) 0.3247143 (0.0297)

20 0.0 0.0580730 (0.0042) 0.0851086 (0.0061)
0.1 0.6508269 (0.0437) 0.6936141 (0.0366)
0.2 3.9959421 (0.2127) 7.9307772 (2.6348)
0.3 16.4362761 (1.3678) 24.4878411 (1.5554)
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Table 5.9: Model III: Entropy risk estimates and corresponding standard errors.

p % missing ∆2(Σ̂
U
SS) ∆2(Σ̂

V ∗
SS )

10 0.0 0.3295884 (0.0063) 0.3463639 (0.0093)
0.1 0.3442326 (0.0079) 0.3555080 (0.0097)
0.2 0.3922506 (0.0098) 0.4231472 (0.0138)
0.3 0.4518739 (0.0187) 0.5270384 (0.0237)

20 0.0 1.1100351 (0.0107) 1.1312420 (0.0089)
0.1 1.3867351 (0.0384) 1.5369483 (0.0360)
0.2 4.4685998 (0.2608) 4.4221240 (0.2856)
0.3 13.9195476 (1.3110) 16.5667952 (1.1101)

Table 5.10: Model IV: Entropy risk estimates and corresponding standard errors.

p % missing ∆2(Σ̂
U
SS) ∆2(Σ̂

V ∗
SS )

10 0.0 0.3347516 (0.0056) 0.3420091 (0.0063)
0.1 0.3561451 (0.0076) 0.3536609 (0.0079)
0.2 0.3901020 (0.0111) 0.3884112 (0.0098)
0.3 0.4395183 (0.0139) 0.4399004 (0.0162)

20 0.0 0.9176583 (0.0083) 0.9345338 (0.0074)
0.1 0.9316105 (0.0101) 0.9592996 (0.0116)
0.2 0.9620128 (0.0090) 1.0192813 (0.0201)
0.3 1.0339355 (0.0123) 1.0986877 (0.0680)
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Table 5.11: Model V: Entropy risk estimates and corresponding standard errors.

p % missing ∆2(Σ̂
U
SS) ∆2(Σ̂

V ∗
SS )

10 0.0 0.2768874 (0.0054) 0.2855551 (0.0090)
0.1 0.4139307 (0.0160) 0.4290270 (0.0161)
0.2 0.8698641 (0.0448) 0.9289941 (0.0586)
0.3 1.8588993 (0.1172) 2.1368920 (0.1284)

20 0.0 0.7514261 (0.0053) 0.7609570 (0.0063)
0.1 1.2295533 (0.0522) 1.1317517 (0.0294)
0.2 2.5715989 (0.0976) 2.4974678 (0.1081)
0.3 7.4723499 (0.3235) 6.8275522 (0.3006)
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Chapter 6: Data Analysis

Kenward (1987) reported an experiment designed to investigate the impact of the control of in-

testinal parasites in cattle. The grazing season runs from spring to autumn, during which cattle can

potentially ingest roundworm larvae which develop from eggs deposited around the pasture from

feces of previously infected cattle. Once infected, the animal is deprived of nutrients and immune

resistance to disease is suppressed which can significantly impact animal growth. Monitoring the

effect of a treatment for the disease requires repeated weight measurements on animals over the

grazing season.

To compare two methods for controlling the disease, say treatment A and treatment B, each of

60 cattle were assigned randomly to two groups, each of size 30. Animal subjects were put out

to pasture at the start of grazing season, with each member of the groups receiving one of the two

treatments. Animals were weighed p = 11 times over a 133-day period; the first 10 measurements

on each animal were made at two-week intervals and the final measurement was made one week

later. Weights were recorded to the nearest kilogram, and measurement times were common across

animals. The longitudinal dataset is balanced, as there were no missing observations for any of the

experimental units. Observed weights are shown in Figure 6.1.
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Figure 6.1: Subject-specific weight curves over time for treatment groups A and B.

We see an upward trend in weights over time, with variance in weights increasing over time

for both groups. Treatment group B demonstrates a sharp decrease in the final weight measure-

ment. The analysis of the same dataset provided by Zimmerman and Núñez-Antón (1997) rejected

equality of the two covariance matrices corresponding to treatment group using the classical likeli-

hood ratio test, making it reasonable to study each treatment group’s covariance matrix separately.

Following Pan and Pan (2017), Zhang et al. (2015), and Pourahmadi (1999), we analyze the data

from the N = 30 cattle assigned to treatment group A, which we assume share a common 11× 11

covariance matrix Σ. The left profile plot in Figure 6.1 of the weights for units in treatment group
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A shows a clear upward trend in weights; variances appear to increase over time, suggesting that

the covariance structure is nonstationary.

The nonstationarity suggested in Figure 6.1 is also supported by the sample correlations given

in Table 6.1; correlations within the subdiagonals are not constant and increase over time, a sec-

ondary indication that a stationary covariance is not appropriate for the data. Table 6.2 gives the

sample generalised autoregressive parameters and the innovation variances, which are plotted in

Figure 6.2a and Figure 6.2b respectively.

day

0 14 28 42 56 70 84 98 112 126 133
0 1.00

14 0.82 1.00
28 0.76 0.91 1.00
42 0.65 0.86 0.93 1.00
56 0.63 0.83 0.89 0.93 1.00
70 0.58 0.75 0.85 0.90 0.94 1.00
84 0.51 0.64 0.75 0.80 0.85 0.92 1.00
98 0.52 0.68 0.77 0.82 0.88 0.93 0.92 1.00

112 0.51 0.61 0.71 0.74 0.81 0.89 0.92 0.96 1.00
120 0.46 0.59 0.69 0.70 0.77 0.85 0.86 0.94 0.96 1.00
133 0.46 0.56 0.67 0.67 0.74 0.81 0.84 0.91 0.95 0.98 1.00

Table 6.1: Cattle data: treatment group A sample correlations.
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day

0 14 28 42 56 70 84 98 112 126 133
0 1 4.673

14 1.00 1 3.939
28 0.04 0.90 1 3.370
42 -0.25 0.25 0.88 1 3.000
56 -0.02 0.07 0.12 0.90 1 3.299

day 70 0.04 -0.28 0.11 0.37 0.82 1 3.363 log (σ̂2
t )

84 0.12 -0.23 0.04 -0.16 0.08 1.03 1 3.610
98 -0.06 0.05 0.02 -0.27 0.23 0.61 0.42 1 3.403

112 0.18 -0.10 0.05 -0.26 -0.10 0.03 0.30 0.93 1 2.780
126 -0.26 0.15 0.45 -0.33 -0.19 0.01 -0.18 0.37 0.94 1 3.280
133 0.13 -0.26 0.08 0.28 0.04 -0.36 -0.05 -0.07 0.37 0.85 1 2.262

Table 6.2: Cattle data: treatment group A sample generalized autoregressive parameters (below
the main diagonal) and log sample innovation variances (rightmost column).
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(a) Sample generalized autoregressive parameters φ̂ts.

(b) Sample innovation variances σ̂2
t

Figure 6.2: Empirical estimates of the parameters of the Cholesky decomposition of the sample covariance
matrix.
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Analyzing the sample regressogram (Figure 6.2a) and sample innovation variogram (Figure 6.2b),

Pourahmadi (1999) suggested that both sample generalized autoregressive parameters and the log-

arithms of the innovation variances can be characterized in terms of cubic functions of the lag only.

They model

φts = x′tsβ,

log
(
σ2
t

)
= z′tγ,

(6.1)

for t = t2, . . . , t11 where

x′ts =
[
1 t− s (t− s)2 (t− s)3

]
, and z′t =

[
1 t t2 t3

]
.

They estimate β and γ via maximum likelihood. Figure 6.3 shows the estimated cubic polynomials

corresponding to Model (6.1).
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(a) Smoothed sample regressogram.

(b) Smoothed sample log innovation variances.
Figure 6.3: Cubic polynomomials fitted to the sample regressogram and log innovation variances for the
cattle data from treatment group A.
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Before estimating the covariance structure, we need to center the data using an adequate es-

timate of the mean weight trajectories. To account for any between-subject variability, we adopt

an approach akin to the dynamical conditionally linear mixed model presented in Pourahmadi and

Daniels (2002):

Yi = f (ti) + Zibi + ε∗i , (6.2)

where Yi is the pi × 1 response vector for the ith subject, bi is a q × 1 vector of unknown random

effects parameters, and Zi is a known pi × q design matrix. f is the smooth function of t, and

ti =
(
ti1, . . . , ti,pi

)′ is the pi× 1 vector of measurement times for subject i. We specify the random

term Zibi as an intercept only, letting Zi = (1, . . . , 1)′ so that

Zibi = αi1pi .

The random effects αi correspond to subject-specific shifts which are assumed to be independent

and identically distributedN (0, σ2
α) random variables. We assume that the pi×1 vector of residuals

ε∗i ∼ N (0,Σi)

are mutually independent of the random intercepts αi, i = 1, . . . , N . Given that the animals belong

to the same treatment group and share a common set of observation times, we assume each subject

shares common covariance matrix Σi = Σ. We let f belong to the Hilbert space

C2 =

{
f : f, f ′ absolutely continuous,

∫
(f ′′ (x))

2
dx <∞

}
,

equipped with the inner product which corresponds to J (f) =
∫

(f ′′ (x))2 dx. We take the

estimators of f , α = (α1, . . . , αN)′ to minimize the penalized joint log likelihood

N∑
i=1

pi∑
i=1

(yij − f (tij)− αi)2 + α′Σ−1
α α + λJ (f) , (6.3)
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where Cov (α) = Σα = σ2
αI. The variance of the random effects σ−2

α is viewed as an additional

smoothing parameter and estimated alongside λ. Figure 6.4 shows the corresponding fitted mean

curves.

Figure 6.4: Subject-specific fitted weight trajectories for cattle in treatment group A.

Centering the data using the fitted mean, the residuals

ε∗ (tij) = y (tij)− (f (tij) + αi) (6.4)

serve as the data for estimating the functions defining the Cholesky factor and innovation variances.

We model

ε∗ (tij) =
∑
k<j

φ̃ (tij, tik) ε
∗ (tik) + ε (tij) (6.5)

where ε is a mean zero Gaussian process with variance σ2 (t).
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Choice of penalty is critical for convergence of the iterative estimation of φ̃ and log (σ2). Pan

and Pan (2017) concluded that the regressogram of empirical estimates of φ̃t,s show consistent

behaviour over l = t− s for each value of t, indicating a lack of a strong functional component of

m. This is consistent Pourahmadi’s choice in the specification of model (6.1) in terms of lag only.

To balance the consideration of previous analyses with the interest of entirely data-driven model

specification, we let φ ∈ H = H[l] ⊗H[m], where

H[l] =

{
φ : φ′ = 0

}
⊕
{
φ : φ (0) = φ′ (0) = 0;

∫
φ′′ (l) dl <∞

}
H[m] =

{
φ : φ ∝ 1

}
⊕
{
φ :

∫ 1

0

φ (m) dm = 0,

∫
φ′′ (m) dm <∞

}
This decomposition leads to a null space comprised of functions of l only, which is attractive

because it coincides with the modeling assumptions made by Pan and Pan (2017), Huang et al.

(2006), and Wu and Pourahmadi (2003) for the same data set. Figure 6.5 shows the estimated

Cholesky surface and innovation variance function evaluated at t = 0, 14, 28, . . . , 112, 126, 133

and the corresponding pairs of observation times (t, s), 0 ≤ s < t ≤ 133. Figure 6.6 shows φ̂

decomposed into the functional components of its ANOVA decomposition.
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(a) S (b) Σ̂ = T̂−1D̂T̂ ′−1

(c) φ̂ (t, s) (d) log σ̂2 (t)

Figure 6.5: The sample covariance matrix S, the estimated covariance matrix for the cattle weight data from
treatment group A and the estimated Cholesky decomposition of the covariance matrix. The generalized
autoregressive coefficient function φ (t, s) and the log innovation variances log σ2 (t) were estimated using
a tensor product cubic spline and cubic spline, respectively. The fitted functions define the components of
the Cholesky factor T̂ and diagonal matrix D̂.
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Figure 6.6: Components of the SSANOVA decomposition of the estimated generalized autoregressive coeffi-
cient function φ evaluated on the grid defined by the observed time points.

Our sole focus on covariance estimation rather than the joint estimation of the mean and co-

variance makes apples-to-apples comparison with other analyses of the same dataset difficult. We

constructed the mean estimate for the cattle in treatment group A shown in Figure 6.4 entirely inde-

pendently of the covariance estimate, which may be suboptimal compared to an iterative procedure

that jointly estimates f , b, and Σ as in Pan and Pan (2017) and Pourahmadi (1999). Nevertheless,

it is interesting to examine the differences between our estimates and cubic model fit shown in

Figure 6.3. Modeling φ as a polynomial in l leaves any nonstationarity to be captured by the inno-

vation variances. Of course, a model for the Cholesky factor having constant innovation variances
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and generalized autoregressive parameters which vary in l only corresponds to a stationary process

when certain conditions on the magnitude of the GARPs are satisfied (Klein, 1997; Madsen, 2007).

Our estimated model instead captures the non-stationarity with both the log innovation variances

as well as with φ2, the functional component corresponding to the main effect ofm. The size of the

functional components (in terms of the squared functional norm), however, does indicate a certain

degree of concordance with the model proposed by Pourahmadi (1999). The squared norm of the

main effect of l (1.914) is over twice that of the main effect of m (0.790), and the squared norm

of the interaction term, as clearly indicated by Figure 6.6, is negligible in comparison to the main

effects.
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Chapter 7: Concluding Remarks and Future Work

The previous discussion proposes a flexible framework for estimating the covariance matrix for

longitudinal data. By modeling the Cholesky decomposition of the covariance matrix, we reframe

covariance estimation as the estimation of a varying coefficient model, which allows for uncon-

strained estimation as well as a statistically intuitive interpretation of the elements of a covariance

matrix. The varying coefficient model for the Cholesky decomposition naturally accommodates

irregularly-spaced longitudinal data and allows varying within-subject sample sizes without re-

quiring imputation of missing observations. The overall framework inherits the flexibility of the

varying coefficient model, which allows us to leverage any of the tools classically used for non-

parametric regression problems in the context of covariance estimation.

Estimation of the varying coefficient model is performed using bivariate smoothing using

penalties which are motivated by the prevalent tendency to specify stationary models for the co-

variance matrix. Penalties enforce regularization of the fitted function so that under heavy penal-

ization, the fitted components of the Cholesky factor correspond to covariance matrices which are

close to stationary. We demonstrate the estimation procedure with two proposed representations of

the varying coefficient function and the innovation variance function. A smoothing spline ANOVA

model for the generalized autoregressive varying coefficient and the innovation variance function

allow the fitted functions to be decomposed into their stationary and nonstationary functional com-

ponents. We propose an alternative functional representation for (φ, log σ2) using tensor product
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B-splines; smoothness is achieved by applying penalties to discrete differences of the vector of

basis coefficients. The discrete penalties, which are constructed independently of the basis, of-

fer flexibility over the smoothing spline penalties and require little computational complexity to

implement.

The choice of basis is important when the unknown functions parameterizing the varying co-

efficient model are better represented by one or the other. Simulation studies reveal the advantages

and disadvantages of our smoothing spline estimator and our P-spline estimator. The simulations

illustrate the relative performance of both estimators compared to alternative estimators proposed

in the longitudinal data literature.

We apply our method to data generated from a longitudinal experiment examining the effec-

tiveness of two treatments for intestinal parasites in cattle as measured by subject body weight

over time. For a single treatment group, our nonparametric estimator echoes some of the modeling

assumptions made to specify parametric models in previous analysis of the same data.

Minimizing computational demand is an obvious motivator for future extensions of our work.

The smoothing spline estimator circumvents the need for knot selection since it is constructed

using a basis function for each of the unique within-subject pairs of measurement times. This is

suitable when there is a fixed set of measurement times and unbalanced date arise due to missing

observations. For the case that there is little overlap in measurement times across subjects so that

these times are “nearly” unique for each subject, the size of the set |V | can be so large that the

dimension of the kernel matrix Kn as defined in (3.23) presents serious computational problems.

An infinite dimensional Hilbert space is not necessarily required for representing the unknown

function to be estimated, since the penalty effectively enforces a low dimensional model space.

Efficient approximation can be carried by using a subset of the elements in V to represent the

122



unknown function. Algorithm 1 can directly accommodate such a low dimensional representation.

Kim and Gu (2004) provide detailed discussion of the efficient approximation ofH.

The versatility of this framework leaves many paths open for further modeling exploration.

In particular, an obvious example is the classification of observations into one of K groups by

quadratic discriminant analysis. A lot of recent attention has been directed toward the problem

of estimating separate p × p covariance matrices Σ1, . . . ,ΣK for K separate groups, where the

number of groups K and the dimension p are both potentially large. Often, there is not enough

data to estimate separate Σi well for each group. For example, problems in financial management

including portfolio selection can be reduced to the prediction of a sequence of large p×p covariance

matrices (Tsay, 2005). Our procedure to covariance estimation encourages exploration of this

problem; the regression model associated with the Cholesky decomposition (2.24) can incorporate

additional group-specific covariates.

The construction of the penalty for the P-spline estimator is convenient and easily appended to

the log likelihood. This allows us to easily use both shrinkage and smoothing for covariance esti-

mation, and combining shrinkage and smoothing may produce better estimates than using shrink-

age and smoothing alone. While adding additional penalty parameters can introduce added compu-

tational requirements, the connection between nonparametric regression modes and mixed models

presents a way to mitigate this complexity. Smoothing parameters are interpreted as variances

of random effects, so model estimation and smoothing parameter selection can be performed si-

multaneously using the stable and efficient algorithms and software that are available for mixed

models. Restricted maximum likelihood (REML) has proven to be very useful as a model selec-

tion tool, often producing smoother fits than generalized cross validation due to its better resistance

to over-fitting (Ruppert and Carroll, 2003).
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Recently Eilers (1999) pointed how to interpret P-splines as a mixed model. Lee and Durbán

(2011) proposed the use of P-splines within a mixed modeling framework to estimate multidimen-

sional functions which can be decomposed into their functional components as with smoothing

spline ANOVA models. This approach adds attractiveness to the interpretability of the models,

and it allows for computationally convenient model fitting and selection. Application of the mixed

model framework presented in Lee and Durbán (2011) to estimation of φ is attractive, because it not

only provides an avenue for stable smoothing parameter selection, but it also permits the decom-

position of the tensor product into functional components as in the SSANOVA model presented in

Chapter 3. Direct application of this approach, however, is inaccessible due to the deconstruction

of the marginal B-spline bases to adjust for the triangular domain of the autoregressive varying

coefficient. Figure 4.6 illustrates how to “trim” the pairs of B-splines that don’t overlap with the

domain of φ, which lies on the triangle 0 < s < t < 1. Trimming the basis inhibits identifiability

of functional components, though in the case that an additive model is appropriate, this trimming

is unnecessary and REML may be employed for model estimation.

Alternatively, bivariate B-splines inherit several of the appealing properties of univariate B-

splines and are applicable in various modeling problems, particularly for those involving non-

rectangular domains. They have been used extensively in the field of graphics for the construction

of smooth surfaces over irregular domains, but thus have far received little attention in the field

of statistics. However, a recent paper by Zhou and Pan (2014) employs a mixed effects model

for the functional principal components as bivariate splines on triangulations for data observed

on an irregular grid. The application of their ideas to covariance estimation presents a promising

approach to estimation of the Cholesky decomposition via bivariate smoothing.
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Appendix A: Chapter 2 Appendix

A.1 Proof of Theorem 3.2.1

Proof. The function space H is decomposed into H0 and H1. H1 can be further decomposed

into the finite dimensional subspace spanned by {K1 (vj,v)}, j = 1, . . . , |V | and its orthogonal

complement inH1. Considering the three subspaces, any φ ∈ H can be written as

φ (v) =

N0∑
i=1

diνi (v) +
∑
vj∈V

cjK1 (vj,v) + ρ (v) , (A.1)

where ρ ∈ H1 is perpendicular to ν1, . . . , νN0
and K1 (vj,v) for vj ∈ V .
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Using the properties of the reproducing kernel K = K0 + K1, we can show that evaluation of

any φ ∈ H at v` ∈ V does not depend on ρ:

φ (v`) = 〈φ (·) , K (v`, ·)〉H

= 〈
N0∑
i=1

diνi (·) +
∑
vj∈V

cjK1 (vj, ·) + ρ (·) , K (v`, ·)〉H

= 〈
N0∑
i=1

diνi (·) +
∑
vj∈V

cjK1 (vj, ·) + ρ (·) , K0 (v`, ·)〉H

+ 〈
N0∑
i=1

diνi (·) +
∑
vj∈V

cjK1 (vj, ·) + ρ (·) , K1 (v`, ·)〉H

= 〈
N0∑
i=1

diνi (·) , K0 (v`, ·)〉H + 〈
∑
vj∈V

cjK1 (vj, ·) , K0 (v`, ·)〉H + 〈ρ (·) , K0 (v`, ·)〉H

+ 〈
N0∑
i=1

diνi (·) , K1 (v`, ·)〉H + 〈
∑
vj∈V

cjK1 (vj, ·) , K1 (v`, ·)〉H + 〈ρ (·) , K1 (v`, ·)〉H

= 〈
N0∑
i=1

diνi (·) , K0 (v`, ·)〉H + 〈
∑
vj∈V

cjK1 (vj, ·) , K1 (v`, ·)〉H

=

N0∑
i=1

diνi (v`) +
∑
vj∈V

cjK1 (vj,v`) .

The last two equalities result from the orthogonality ofH0, {K1 (vj,v)}, and ρ, and the reproduc-

ing property of K. Thus, the negative log likelihood in (3.18) depends only on
∑N0

i=1
diνi (v) +∑

vj∈V cjK1 (vj,v). On the other hand, the penalty is given by

||P1φ||2 = ||
∑
vj∈V

cjK1 (vj, ·) + ρ (·)||2H,

= ||
∑
vj∈V

cjK1 (vj, ·)||2H + ||ρ (·) ||2H.

The penalized negative log likelihood is obviously minimized when ||ρ||2 = 0, or ρ (·) = 0. This

leads to the form of the minimizer for φλ as stated in Theorem 3.2.1.
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Appendix B: Chapter 4 Appendix

B.1 Connecting the Finite Difference Penalty to B-spline Derivatives

The evaluation of the ith B-spline using the recursive relation (4.1) can be derived from their

definition as divided differences of truncated power functions.

Definition B.1.1. Let t = {ti} denote a non-decreasing sequence. The ith B-spline of order k

which corresponds to the knot sequence t is defined by

Bi,k,t (x) = (ti+k − ti) [ti, . . . , ti+k] (· − x)k−1
+

(B.1)

The placeholder notation, (· − x)k−1
+

, is used to indicate that the kth divided difference of the

truncated power function g (t) = (t− x)k−1
+

is obtained by fixing x and applying the divided

difference to g (t) as a function of t alone. Henceforth, we will write Bik rather than Bi,k,t when

the knot sequence can be inferred from surrounding context.

The definition of Bi as a divided difference is necessary to bridge the expression for its deriva-

tive to the differences of its coefficients. The derivative of the truncated power function g (x) =

(t− x)k−1
+

is given by

∂

∂x
g (x) =

∂

∂x
(t− x)k−1

+
= − (k − 1) (t− x)k−2

+
.
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Substituting B.1 into the recursive relation (4.1), we may write the derivative of the ith B-spline of

order k as follows:

B′i,k (x) =

[
[ti+1, . . . , ti+k]− [ti, . . . , ti+k−1]

]
∂

∂x
(· − x)k−1

+

= − (k − 1)

[
[ti+1, . . . , ti+k]− [ti, . . . , ti+k−1]

]
(· − x)k−2

+

= − (k − 1)

[
− Bi+1,k−1 (x)

(ti+k − ti+1)
+

Bi,k−1 (x)

(ti+k−1 − ti)

]
This allows us to write

∂

∂x

[∑
i

θiBi

]
=
∑
i

θiB
′
i,k

=
∑
i

(k − 1)
θi − θi−1

ti+k−1 − ti
Bi,k−1. (B.2)

Note that the limits on the previous summation in B.2 are left unspecified; the formula is written

for bi-infinite sums, and their application to finite sums is accessible after they are written formally

as bi-infinite sums by augmenting the appropriate zero terms. However, if we are interested in a

particular interval over the domain, say [tr, ts], then for x ∈ [tr, ts], then

∂

∂x

[∑
i

θiBi,k (x)

]
=

s−1∑
r−k+2

(k − 1)
θi − θi−1

ti+k−1 − ti
Bi,k−1 (x)

since Bi,k−1 (x) = 0 for all i 6∈ {r − k + 2, . . . , s− 1} when tr ≤ x ≤ ts. Applying B.2 j times

gives us that the jth derivative of f =
∑

i
θiBik has form

∂j

∂xj

[∑
i

θiBi,k (x)

]
=
∑
i

θ(j+1)
i Bi,k−j (B.3)

θ(j+1)
i ≡

 θi, j = 0
θ
(j)
i −θ

(j)
i−1

(ti+k−j−ti)/(k−j)
, j ≥ 1

(B.4)
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Proof. We proceed by induction on j. We have already shown the case for j = 1 in the derivation

of B.2. Assume that the statement holds for some j∗ > 1, so that we have

∂j
∗

∂xj∗

[∑
i

θiBi,k (x)

]
=
∑
i

θ
(j∗)
i − θ(j∗)

i−1

(ti+k−j∗ − ti) / (k − j∗)
Bi,k−j∗ (x) .

Then the (j∗ + 1)st derivative is given by

∂j
∗+1

∂xj∗+1

[∑
i

θiBi,k

]
=
∑
i

θ
(j∗)
i − θ(j∗)

i−1

(ti+k−j∗ − ti) / (k − j∗)
B′i,k−j∗

=
∑
i

θ(j∗)
i B′i,k−j∗

=
∑
i

θ(j∗)
i (k − (j∗ + 1))

[
Bi,k−(j∗+1)

ti+k−(j∗+1) − ti
−

Bi+1,k−(j∗+1)

ti+k−(j∗+1)+1 − ti+1

]

=
∑
i

θ
(j∗)
i − θ(j∗)

i−1(
ti+k−(j∗+1) − ti

)
/ (k − (j∗ + 1))

Bi,k−(j∗+1)

=
∑
i

θ(j∗+1)
i Bi,k−(j∗+1)

The choice to write k− j as a divisor in the denominator lends to the interpretation of B.3 as a

difference quotient, with the quantity
ti+k−j − ti
k − j

representing a mean mesh length of sorts on the interval [ti, ti+k−j]. We note that the case where t

contains replicated knots leads to division by zero. This is, however, a trivial situation, since for

ti = ti+k−j, we have Bi = 0, and we take 0
0

= 0.
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Appendix C: Chapter 5 Appendix

C.1 Quadratic Risk Estimates for Simulation with Complete Data

Table C.1: Multivariate normal simulations for model I. Estimated quadratic risk is reported for
our smoothing spline ANOVA estimator and P-spline estimator, the oracle estimator for each co-
variance structure, the parametric polynomial estimator of Pan and MacKenzie (2003), the sample
covariance matrix, the tapered sample covariance matrix, and the soft thresholding estimator.

p Σ̂oracle Σ̂SS Σ̂PS Σ̂poly S Sω Sλ

N = 50 10 0.00267 0.0016 0.0052 0.0912 0.3901 0.3864 0.3874
20 0.00459 0.0010 0.0043 0.0757 0.8371 0.7710 0.7716
30 0.00386 0.0026 0.0036 0.1109 1.2857 1.1937 1.2074

N = 100 10 0.00209 0.0005 0.0010 0.0426 0.2116 0.1676 0.1720
20 0.00212 0.0003 0.0011 0.0376 0.4255 0.3902 0.3970
30 0.00276 0.0002 0.0011 0.0313 0.5984 0.5790 0.5842

Table C.2: Multivariate normal simulation-estimated quadratic risk for model II.

p Σ̂oracle Σ̂SS Σ̂PS Σ̂poly S Sω Sλ

N = 50 10 0.0483 0.0623 0.0792 7.0137 0.6269 0.8108 0.5770
20 0.4317 0.7972 1.2456 852.2787 2.7659 30.8197 36.1492
30 6.7921 12.8700 7.2129 4849.8925 21.0228 365.0301 1804.9695

N = 100 10 0.0280 0.0254 0.0525 7.0482 0.2683 0.4351 0.2665
20 0.2625 0.2877 0.8153 861.3937 1.3347 5.5170 7.3283
30 2.6619 2.7399 6.9793 5075.4782 8.4769 66.9461 420.2973
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Table C.3: Multivariate normal simulation-estimated quadratic risk for model III.

p Σ̂oracle Σ̂SS Σ̂PS Σ̂poly S Sω Sλ

N = 50 10 0.0697 0.0656 0.0665 3.4849 0.4977 0.6678 0.5858
20 0.4706 1.0095 0.9146 426.0848 2.0716 4.8213 8.4099
30 5.3699 10.8782 8.1124 5061.3563 16.5536 779.2829 1181.3770

N = 100 10 0.0328 0.0486 0.0363 3.5437 0.2437 0.2929 0.2791
20 0.1958 0.6260 0.3783 416.1285 1.0193 1.5353 5.1553
30 2.2121 5.9367 3.4576 5082.1367 7.9582 14.2394 253.4296

Table C.4: Multivariate normal simulation-estimated quadratic risk for model IV.

p Σ̂oracle Σ̂SS Σ̂PS Σ̂poly S Sω Sλ

N = 50 10 0.0053 0.0144 0.0196 0.2575 0.4420 0.4628 0.4620
20 0.0073 0.0449 0.0154 0.4384 0.7951 0.9184 0.9177
30 0.0072 0.0893 0.0189 0.6539 1.3363 1.3014 1.3013

N = 100 10 0.0031 0.0112 0.0186 0.2098 0.2136 0.2299 0.2295
20 0.0027 0.0420 0.0143 0.4877 0.4509 0.4311 0.4307
30 0.0035 0.0792 0.0181 0.6616 0.6263 0.6598 0.6589

Table C.5: Multivariate normal simulation-estimated quadratic risk for model V.

N p Σ̂oracle Σ̂SS Σ̂PS Σ̂poly S Sω Sλ

N = 50 10 0.1610 0.3621 0.2456 1.3738 0.8484 1.6174 0.8963
20 0.5236 0.9911 0.8206 2.8419 1.7324 3.0233 1.6375
30 0.4632 1.5352 1.1507 4.1877 2.5484 5.1546 2.6727

N = 100 10 0.0813 0.3091 0.2678 1.2439 0.4175 1.0431 0.4922
20 0.1522 0.9734 0.4111 2.7280 0.7896 2.1932 0.8461
30 0.3656 1.6032 0.7701 3.8905 1.2577 3.5722 1.3270
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C.2 Quadratic Risk Estimates for Simulation with Irregularly Sampled Data

Table C.6: Model 1: Quadratic risk estimates and corresponding standard errors for the MCD
smoothing spline ANOVA estimator via 100 simulated multivariate normal samples of sizeN = 50
when 0%, 10%, 20%, and 30% of the data are missing for each subject. Risk is reported for the
estimator constructed using the unbiased risk estimate and leave-one-subject-out cross validation
for smoothing parameter selection.

p % missing ∆1(Σ̂
U
SS) ∆1(Σ̂

V ∗
SS )

10 0.0 0.001625283 (3e-040) 0.00242142 (5e-040)
0.1 0.002667487 (4e-040) 0.00340902 (6e-040)
0.2 0.002203362 (4e-040) 0.00481581 (7e-040)
0.3 0.005959094 (9e-040) 0.00791520 (0.0016)

20 0.0 0.000865565 (1e-040) 0.00265909 (0.0018)
0.1 0.001350105 (2e-040) 0.24942590 (0.2471)
0.2 0.002791360 (3e-040) 0.01027696 (0.0032)
0.3 0.004419142 (6e-040) 0.09231505 (0.0516)

Table C.7: Model 2: Quadratic risk estimates and corresponding standard errors.

p % missing ∆1(Σ̂
U
SS) ∆1(Σ̂

V ∗
SS )

10 0.0 0.0450916 (0.0082) 0.0601659 (0.0096)
0.1 0.0696728 (0.0100) 0.1512636 (0.0289)
0.2 0.2300287 (0.0335) 0.2343197 (0.0398)
0.3 0.4409229 (0.0661) 0.6346628 (0.1247)

20 0.0 0.4590734 (0.0705) 0.6819051 (0.1176)
0.1 19.4089837 (2.0563) 20.8552036 (1.5583)
0.2 268.9477374 (20.7521) 3969.3959755 (3513.7089)
0.3 2437.4762290 (305.7227) 5001.5651163 (603.1301)
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Table C.8: Model 3: Quadratic risk estimates and corresponding standard errors.

p % missing ∆1(Σ̂
U
SS) ∆1(Σ̂

V ∗
SS )

10 0.0 0.0650014 (0.0055) 0.0682312 (0.0059)
0.1 0.0770316 (0.0081) 0.0892940 (0.0118)
0.2 0.1140654 (0.0142) 0.2008099 (0.0280)
0.3 0.3315869 (0.0677) 0.3268610 (0.0495)

20 0.0 1.0422739 (0.1994) 1.2132111 (0.2173)
0.1 11.9788732 (1.7077) 18.5305750 (1.5563)
0.2 232.1002465 (23.7789) 280.9434501 (42.1525)
0.3 1667.1547183 (263.3001) 2601.3353420 (338.6449)

Table C.9: Model 4: Quadratic risk estimates and corresponding standard errors.

p % missing ∆1(Σ̂
U
SS) ∆1(Σ̂

V ∗
SS )

10 0.0 0.01436606 (7e-040) 0.01655013 (0.0013)
0.1 0.01684656 (8e-040) 0.01893500 (0.0022)
0.2 0.02374962 (0.0023) 0.02433408 (0.0020)
0.3 0.03204756 (0.0028) 0.03424552 (0.0044)

20 0.0 0.04488566 (9e-040) 0.04670697 (9e-040)
0.1 0.04654451 (0.0012) 0.05029391 (0.0015)
0.2 0.05132972 (0.0013) 0.06053346 (0.0038)
0.3 0.06230931 (0.0021) 0.10699654 (0.0459)
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Table C.10: Model 5: Quadratic risk estimates and corresponding standard errors.

p % missing ∆1(Σ̂
U
SS) ∆1(Σ̂

V ∗
SS )

10 0.0 0.3621065 (0.0091) 0.3623509 (0.0128)
0.1 0.6778957 (0.0457) 0.7067101 (0.0426)
0.2 2.1262957 (0.1590) 2.4381408 (0.2292)
0.3 6.8051314 (0.6256) 8.2414439 (0.7087)

20 0.0 0.9910795 (0.0138) 1.0334928 (0.0099)
0.1 1.7214964 (0.1028) 1.5051130 (0.0577)
0.2 5.3527162 (0.3290) 5.1871496 (0.3852)
0.3 29.6617541 (2.0158) 25.1766132 (1.8094)

C.3 Comprehensive Tables for Simulations with Complete Data
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